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Abstract  Quantile Regression (QR) performed better than Ordinary Least Square (OLS) when the Data is skewed. 
Its best result can be achieved when the Data is transformed. Quantreg package of R software was used to illustrate 
the various power transformation fitness for quantile regression model. The analysis shows that the best result was 
obtained from the square root of y transformation with an average error term (ϵi) of 0.9539, -0.0494, 0.0238, -0.5309 
and -0.7544 for 10th, 25th, 50th, 75th and 90th quantile respectively. From the results obtained, it shows that model 
transformation can greatly improve the result of quantile regression model. 

Keywords: Quantile Regression, skewed distribution, power transformation and model selection 

Cite This Article: Onyegbuchulem B.O., Nwakuya M.T, Nwabueze J.C, and Otu Archibong Otu, “Choice of 
Appropriate Power Transformation of Skewed Distribution for Quantile Regression Model.” American Journal of 
Applied Mathematics and Statistics, vol. 7, no. 3 (2019): 105-111. doi: 10.12691/ajams-7-3-4. 

1. Introduction 

Conditional-median regression is a special case of 
quantile regression in which the conditional 50th quantile 
is modeled as a function of covariates. More generally, 
other quantiles can be used to describe non-central 
positions of a distribution; the quantile notion generalizes 
specific terms like quartile, quintile, decile, and percentile. 
The pth quantile denotes that value of the dependent 
variable below which the proportion of the population is p. 
Thus, quantiles can specify any position of a distribution 
[7]. 

The first – order Quantile Regression model was 
introduced by Koenker and Bassett [2]. It has the form 

 ( ) ( )1
0y i iQ X F ux

τ β β τ−= + +  (1) 

Where 
𝑄𝑄𝑦𝑦𝑦𝑦  is the conditional value of the dependent variable 
given 𝜏𝜏 in the 𝑦𝑦𝑡𝑡ℎ trial, 
𝛽𝛽0 is the intercept, 
𝛽𝛽𝑦𝑦  is a parameter, 
𝜏𝜏 denotes the quantile (eg., 𝜏𝜏 = 0.5 for the median), 
𝑋𝑋𝑦𝑦   is the value of the independent variable in the 𝑦𝑦𝑡𝑡ℎ trial, 
𝐹𝐹𝑢𝑢  is the common distribution function of the error 𝜏𝜏,  
𝐸𝐸�𝐹𝐹−1

𝑢𝑢(𝜏𝜏)� = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦 = 1, … … . ,𝑛𝑛, eg 𝐹𝐹−1(0.5)  is the 
median or 0.5 quantile. 

This model conditional quantile is a function of covariates. 
Therefore, quantile regression model is naturally an 

extension of the linear-regression model. While the linear-
regression model specifies the change in the conditional 
mean of the dependent variable associated with a change 
in the covariates, the quantile- regression model specifies 
changes in the conditional quantile. Since any quantile can 
be used, it is possible to model any predetermined position 
of the distribution. Thus, researchers can choose positions 
that are tailored to their specific inquiries 

However, the expected error term of quantile regression 
models especially the median regression model which is 
closely related to the linear regression in term of precision 
often than not don’t approximate to zero. Reference [1] 
showed that the expected error term of multiple quantile 
regression can be improved by transforming the response 
variable using log transformation. Reference [2] uses the 
relationship between variances and means over several 
groups to find the appropriate transformation for the study 
data which makes the variance independent of the mean. 
Reference [2] shows that procedure for determining the 
appropriate transformation is to determine the coefficient 
(𝛽𝛽) of regression of natural logarithm of group standard 
deviation (𝜎𝜎�𝑦𝑦) on the natural logarithm of group average 
��̅�𝑥𝑦𝑦 ,𝑦𝑦=1,2,−−−𝑚𝑚�. He explained that the most popular and 
common transformations are the power of transformation 
such as: �𝑥𝑥𝑡𝑡 ,  𝑙𝑙𝑓𝑓𝑙𝑙𝑒𝑒𝑋𝑋𝑡𝑡 , 1/𝑋𝑋𝑡𝑡 , 1/�𝑋𝑋𝑡𝑡 , 1/𝑋𝑋2

𝑡𝑡 , 𝑋𝑋2
𝑡𝑡 . 

Reference [1] empirically analysed the monthly earning 
distribution of Pakistan using logarithm transformation, 
where the log of monthly earning is taken as a response 
variable, while education, experience, age, sex, marital 
status, nature of work, region, and the provinces are used 
as explanatory variables. Therefore, this study will apply 
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the five powers of transformation stated by [2] on the 
response variable to ascertain the appropriate power of 
transformation that can be used to model quantile 
regression in the presence of skewed distribution. This 
study is aimed at investigating the best power 
transformation of skewed distribution for quantile 
regression model. The study will specifically: 

Assess the best transformation fit of the model based on 
some selected power transformations, Assess the impact 
of the covariate on the response variable and Conduct 
diagnostic tests on the suggested model. 

2. Methodology 

This paper investigates the best power transformation 
for quantile regression model. The data was generated 
using Monte Carlo Simulation technique from the data of 
Weilbull distributed data using the sharp and scale 
parameters of Annual salaries, income and wages of Health 
workers in Nigeria. The generated data shall be analysed 
using transformed quantile regression Model. The statistical 
software to be used in the analysis will be quantreg package 
of R Software. The hypothesis is therefore, stated as: 
𝐻𝐻0: 𝛽𝛽𝑦𝑦(𝜏𝜏) =  0,   Covariate(𝑥𝑥𝑦𝑦) has no significant effect 

on the response variable  
𝐻𝐻1 :𝛽𝛽𝑦𝑦(𝜏𝜏)  ≠  0, Covariate(𝑥𝑥𝑦𝑦)  has a significant effect 

on the response variable  

2.1. Quantile Regression Model 
If we consider the i.i.d sample of 𝑦𝑦1,−− −𝑦𝑦𝑛𝑛 , the 

unconditional sample mean can be defined as the solution 
to the problem of minimizing sum of squared residual 

 ( )2
1

ˆ min .
n

i
i

y
µ

µ µ
∈ℜ =

= −∑  (2) 

Hence the sample median 𝜉𝜉 is the minimizer of the sum 
of absolute error loss or deviations. 
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To see why median can be define as a minimization 
problem, it can be written as 
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Differentiating with respect to ξ and setting the partial 
derivative to zero will lead to the solution for the 
minimization problem. The partial derivative of the first 
term is: 
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And the partial derivative of the second term is: 
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Combining these two partial derivatives lead to: 
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By setting 2𝐹𝐹(𝜉𝜉) – 1 = 0,  we solve for the value of 

𝐹𝐹(𝜉𝜉) = 1
2

, that is, the median, to satisfy the minimization 

problem.  
For the general 𝜏𝜏𝑡𝑡ℎ sample quantile ξ(𝜏𝜏), which is the 

analogue of 𝜌𝜌(𝜏𝜏), may be formulated as the solution of the 
optimization problem 

 ( ) ( )
1

min .
n

i
i

y
ξ

ρτ ξ ρτ ξ
∈ℜ =

= −∑  (6) 

Repeating the above argument for quantiles, the partial 
derivative for quantiles corresponding to (6) 
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We set the partial derivative F(𝜉𝜉) −  𝜌𝜌 = 0 and solve 
for the value of F(𝜉𝜉) −  𝜌𝜌 that satisfies the minimization 
problem. Equation (7) is illustrated thus: 

 
Figure 1. Quantile Regression 𝝆𝝆  

Just as the unconditional sample mean in (2) minimizes 
the sum of square residuals (error lose), the conditional 
sample mean also minimizes the sum of square residual by 
replacing the scalar 𝜇𝜇  by 𝜇𝜇(𝑥𝑥𝑦𝑦 ,𝛽𝛽) , the estimate of the 
conditional mean function 𝐸𝐸[𝑌𝑌/𝑥𝑥] is obtained 

 ( ) ( )( )2

1
min , .

n

i i
i

E Y x y x
β

µ β
∈ℜ =

= −∑  (8) 

This can be proceeded in the same way in quantile 
regression. to obtain an estimate of the conditional median 
function, the scalar ξ in (3) is replaced by the parametric 
function 𝜉𝜉(𝑥𝑥𝑦𝑦 ,𝛽𝛽): 

 ( ) ( ),
1

1 min .2
n

i i
i

y x
ξ

β τ ξ β
∈ℜ =

= = −∑  (9) 
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To obtain the estimates of the other conditional quantile 
function the conditional quantile is considered and the 
absolute values is replaced by (10): 

 ( ) ( )( )
1

min , .
n

i i
i

y x
ξ

ρτ β ρτ ξ β
∈ℜ =

= −∑  (10) 

Minimizing (10) results in a quantile regression model. 
The resulting minimization problem of (10), when 
𝜉𝜉�𝑥𝑥𝑦𝑦 ,𝛽𝛽(𝜏𝜏)�  is formulated as a linear function of the 
parameters can be solved very efficiently by linear 
programming method. The progression of ideas that led to 
(10) motivated the original quantile regression model 
presented in [8] 

2.2. Model Specification 
Following [8] and [7], our proposed model will take the 

form: 

 ( ) ( ) ( ) ( )
0 0( ) i iQ p Xτ τ ττ β β ε= + +   (11) 

Where 
( )( )Q p τ  = Transformed response variable containing n 

observations simulated from the parameters of data on 
Health Workers Allowances,  
𝛽𝛽0 = Intercept 
𝛽𝛽𝑦𝑦  = Unknown Parameters 
𝜀𝜀= a classical error terms 
𝜏𝜏 = Specified quantiles of Simulated Data. This research 
examines the following quantiles:  0.1, 0.25, 0.5, 0.75, 0.9 
𝑋𝑋 = the covariate  
𝑛𝑛 the sample sizes = 3000 was used. 

2.3. Goodness of Fit of QRM 
An analog of 𝑅𝑅2 statistics can be readily developed for 

quantile regression models. Reference [5] stated that “Since 
linear regression model fits are based on the least square 
criterion and quantile regression models are based on 
minimizing a sum of weighted distance ∑ 𝑑𝑑𝑝𝑝(𝑦𝑦𝑦𝑦 ,𝑦𝑦�𝑦𝑦)𝑛𝑛

𝑦𝑦  =  1  
with different weights used depending on whether 𝑦𝑦𝑦𝑦 > 𝑦𝑦�𝑦𝑦  
or 𝑦𝑦𝑦𝑦 < 𝑦𝑦�𝑦𝑦 . The goodness of fit will be measured in a 
manner that is consistent with this criterion”, but [9] 
suggested measuring goodness of fit by comparing the 
sum of weighted distances for the model of interest with 
the sum in which only the intercept parameter appears.  

Let 𝑉𝑉1(𝑝𝑝) be the sum of weighted distance for the full 
𝑝𝑝𝑡𝑡ℎ  quantile regression model, and  𝑉𝑉0(𝑝𝑝) be the sum of 
weighted distance for the model that includes only a 
constant term. Therefore, using the one covariate model 
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For the model that only includes a constant term, the 
fitted constant is the sample 𝑝𝑝𝑡𝑡ℎ  quantile 𝑄𝑄� (𝑝𝑝)  for the 
sample 𝑦𝑦1, … … … .𝑦𝑦𝑛𝑛  the goodness of fit is then defined as 

 ( ) ( )
( )

1

01 .
V p

R p
V p

= −  (13) 

Since 𝑉𝑉0(𝑝𝑝)  and 𝑉𝑉1(𝑝𝑝)  are nonnegative, R(p) is at  
most 1. Also, because the sum of weighted distance is 
minimized for the full-fitted model, 𝑉𝑉1(𝑝𝑝) is never greater 
than 𝑉𝑉0(𝑝𝑝), so R(p) is greater than or equal to zero. Thus, 
R(p) is within range of [0,1], a larger R(p) indicates a 
better model fit. The R(p) defined above allows for 
comparison of a fitted model with any number of 
covariates beyond the intercept term to model in which 
only the intercept term is present. This is the restricted 
form of a goodness-of-fit introduced by Koenker and 
Machado (1999) for nested models.  

3. Data Simulation 

For the study data Weibull distribution was found to be 
left skewed as shown in Figure 2 with sharp and scale 
parameters 1.78292 and122560 respectively. To simulate 
the data, quantile function of Weibull distribution function 
(probit function) which is simply the inverse of the CDF of 
Weibull distribution was derive by equating the CDF to 
F(y) and theoretically solve for y. 

 
Figure 2. Graph of Original Data Simulated with Weibull Distribution 

Probability Density Function of a Weibull distribution 
function is given as 
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Let the Cumulative Density Function (CDF) of a 
Weibull distribution be denoted by 𝐹𝐹(𝑦𝑦) 
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ky
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This is proceeded by deriving the probit function 
theoretically as: 

 ( )1

ky

e F y
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   −    − =  

 ( )1
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e F y
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   −     = −  

 ( )log 1
ky F y

λ
 − = −     

 

 ( )
1
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 − = −     
 

 ( )( )
1

log 1 ky F y
λ

 = − −  
 

 ( )( )
1

log 1 ky F y λ = − − 
 

 

 ( ) ( )1Q p F y−=  

 ( )( )
1

( ) log 1 kQ p F y λ = − − 
 

 (16) 

Where  
𝑄𝑄(𝑝𝑝) = 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑦𝑦𝑡𝑡 𝑓𝑓𝑢𝑢𝑛𝑛𝑓𝑓𝑡𝑡𝑦𝑦𝑓𝑓𝑛𝑛  
𝜆𝜆  =  scale parameter 
𝑘𝑘  =  shape parameter 
𝐹𝐹(𝒚𝒚) = Cumulative Density Function (CDF) 

Following the derivation of probity function, Monte 
Carlo simulation will then be applied on the derived 
function using both the sharp parameter (1.78292) and the 
scale parameter (122560) to generate sample size of 3000 
for the response variable while the explanatory variable is 
simulated using the normal distribution with the sharp and 
scale parameters of 11.27641 and 322999 respectively. 

3.1. Choice of Data Transformation 

 
Figure 3. Histograms and the Normality plots 

Choice of appropriate data transformation will be based 
on the Histograms of the transformed data, the normality 
plots, the values of Skewness and Kurtosis of the 
transformed values, it will also be based on comparing the 
values of the mean and the median of the transformed data 
and assessment of the expected error terms of the quantile 
regression model for the various transformed series. 

 

https://en.wikipedia.org/wiki/Scale_parameter
https://en.wikipedia.org/wiki/Shape_parameter
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Therefore, the following the transformation technique 
were considered and presented in equation 17 to 21 while 
their graphs are in Figure 3. 

i. Log Transformation:  

 ( )( )
1

( ) log log 1 kQ p F y λ
  = − −  
  

  (17) 

ii. Square root of y transformation 

 ( )( )
1

21
( ) log 1 kQ p F y λ

  = − −  
  

  (18) 

iii. Inverse of Square root of y transformation: 

 ( )( )
1

21
( ) log 1 kQ p F y λ

−
  = − −  

  
  (19) 

iv. Inverse of y transformation: 

 ( )( )
11

( ) log 1 kQ p F y λ
−

  = − −  
  

  (20) 

v. y-squared transformation: 

 ( )( )
21

( ) log 1 .kQ p F y λ
  = − −  
  

 (21) 

3.2. Results and Discussion 
The graph of log of y transformation as well the graph 

of log of y estimate against the actual log of y show that 
the data was not transformed, the graph of log of y 
transformation is right skewed and the graph of log of y 
estimate against the actual y is partially curved at the 
center showing that log y estimate is not in full agreement 
with the actual log of y. Table 1 also shows that the values 
of the mean and the media are equal but the skewness is 

less than 0 while the Kurtosis is greater than 3 which 
mean that the distribution is not normally distributed. The 
result of the table two show that despite the fact that the 
50th quantile is approximately zero but the 25th quantile is 
less than the 50th quantile which means that the result may 
be spurious and cannot be relied upon. 

The graph of Inverse of square root of y transformation 
as well the graph of Inverse of square root of y estimate 
against the actual Inverse of square root of y show that the 
data was over transformed. The graph of Inverse of square 
root of y is left skewed while that of the graph of Inverse 
of square root of y estimate against the actual Inverse of 
square root of y shows a vertical straight line meaning that 
the distribution of Inverse of square root of y estimate is 
not in agreement with the actual Inverse of square root of 
y. the result of table 0ne shows that while the median is 
relatively equal to the mean, the Skewness is greater than 
zero while kurtosis is far greater than three. The result of 
Table 2 shows that while the expected error term of the 
50th quantile is approximately zero that of the 10th, 25th, 
75th and 90th quantiles are all less than the 50th quantile 
which suggests that the estimates may be spurious. 

The graph of Inverse of y transformation as well the 
graph of Inverse of y estimate against the actual Inverse of 
y show that the data was not transformed. The graph of 
Inverse of y is left skewed with all the distributions 
grouped into one bar. Also, while the graph of Inverse of y 
estimate against the actual Inverse of y shows a vertical 
straight line meaning that the distribution of the inverse of 
y estimate is never in agreement with that of the actual 
inverse of y. the result of Table 1, shows that the mean is 
not equal to the median, the skewness is slightly greater 
than zero and the kurtosis is far greater than three. The 
result of Table 2 shows that both the 10th, 25th, 50th, 75th 
and 90th quantile all have their expected error term as zero 
which means that the estimate made with any of the 
quantile estimate will be the same, which makes the 
quantile regression model insufficient. 

Table 1. Test of Normality of the Transformed Data 

 Quantile 
Model Trans. mean median Skewness kurtosis sd AIC 

y 107189 97670. 0.4614 3.4456 61889. 63123. 
Log y. 11.376 11.489 -0.4734 5.6279 0.7177 -3162. 

1
2y  312.64 312.52 0.0038 2.6331 97.189 16257. 

1
2y−  0.0036 0.0032 0.7129 167.711 0.0019 -36675. 

1y−  1.6969 1.0239 0.3559 2001.45 5.6729 -61720 

2y  1.5E10 9.5E9 1.0226 10.8067 1.69E10 143676. 

Table 2. Expected Error Term of the Model 

 Quantile 
Model Transf .10 .25 .50 .75 .90 

y 8423. 6850. 3824. -3079. -11518 
Log y 0.2262 0.0298 -0.0691 -0.1176 -0.1307 

1
2y  6.0081 1.1496 -0.3788 -2.0249 -4.4646 

1
2y−  0.0110 0.0109 0.089 0.0117 0.0125 

1y−  0.00008 0.00008 0.00008 0.00009 0.00011 

2y  5.496E9 4.759E9 -1.12E11 -1.18E11 -8.24E9 

 



 American Journal of Applied Mathematics and Statistics 110 

The graph of y-squared transformation as well the 
graph of y-squared estimate against the actual y-squared 
show that the data was not transformed. The graph of  
y-squared transformation is also left skewed, also while 
the graph of y-squared estimate against the actual y-square 
transformation shows a curved line meaning that the two 
distributions are not fully in agreement. The result of 
Table 1 shows that the mean is not equal to the median 
and the skewness and the kurtosis are far greater than the 
zero and 3 respectively meaning that the distribution is not 
normally distributed. The result of Table 2 shows that the 
50th quantile as well all the other quantiles are all not 
equal to zero meaning that the distribution was not 
actually transformed. 

The graph of square root of y transformation as well the 
graph of square root of y estimate against the actual square 
root of y show that the data has been transformed. The 
graph of square root of y transformation is symmetric as 
well mesokurtic. This can also be seen from the graph of 
square root of y estimate against the actual square root of 
y transformation which shows a straight-line curve 
meaning that the estimated data is in agreement with the 
actual data. From Table 1, it can be observed that the 
mean is equal to the median, and the skewness is 
approximately zero while the kurtosis is approximately 
three meaning that y-square root transformation is 
normally distributed. The result of the expected error term 
of the quantile regression estimate in Table 2 shows that 
the 50th quantile is approximately zero (-0.3788), while 
the 10th, 25th, 75th and 90th quantiles are distributed around 
the 50th quantile with 6.0081, 1.1496, -2.0249 and -4.4646 
respectively meaning that the model has met the 
assumption that the expected error term must be zero 
hence can be said to be efficient. 

Table 3. shows that the intercept has coefficient values 
of 25.5475, 25.5516, 25.5583, 25.5560, 25.5556 for the 
10th, 25th, 50th, 75th, 90th quantile respectively. The 
explanatory variable (𝑥𝑥1)  has coefficients value of 
0.00004 for all the five quantiles. The results of the p-
values show that all the coefficient value have significant 
effect on the explanatory variable (𝑦𝑦). The result of the 
individual standard errors shows a minimal error in the 
model hence the model of square root transformation in 
quantile regression model is efficient at the 50th quantile 
and can be relied on. With the confirmation of the 
efficiency, as well the reliability of the study model, the 
model can therefore be used to make some conclusive 
remark: The graph of Figure 4 shows the existence of 
wide discrepancy between the upper and lower income 
earners in the health institutions. 

Table 3. Coefficient and p-value of Square Root   Transformed 
Model 

 .10 .25 .50 .75 .90 
intercept 25.54 25.56 25.56 25.56 25.56 
Std.Error 0.0022 0.0009 0.0004 0.0001 0.0001 
t-value 11420 27371 70285 203497 290428 
P(>|t|) 0.00 0.00 0.00 0.00 0.00 

Coef Value 0.00 0.00 0.00 0.00 0.00 
Std.Error 0.00 0.00 0.00 0.00 0.00 
t-value 63.93 152.03 349.38 969.46 1710.0 
P(>|t|) 0.00 0.00 0.00 0.00 0.00 

Psoudo - R 0.713 0.757 0.802 0.844 0.870 

 
Figure 4. Graph of low and upper class 

4. Conclusion 

Having painstakingly navigated through the transformation 
of data using different kinds of power transformation 
which includes: logarithm of y transformation, transpose 
of y transformation,  transpose of square root of y 
transformation, square root of y transformation, transpose 
of y-squared transformation and y-squared transformation, 
the result showed that square root of y transformation is 
the better transformation fit for Weibull distributed data 
on quantile regression model based on the plots of the 
histogram of the transformed data, plot of the estimated 
data against the actual data, expected error term and 
normality test using the mean, median, skewness and 
kurtosis. 

References 
[1] Arshad, I. A., Younas, U., Shaikh,A.W & Chandio,M.S (2016). 

Quantile Regression Analysis of Monthly Earnings in Pakistan; 
Sindh Univ. Res. Jour. (Sci. Ser.) Vol. 48 (4) 919-924 (2016). 

[2] Bartlett, M.S (1974). The use of Transformation, Biometrica 3, 
39-52. 

[3] Chaudhuri, P. &Loh, W.-Y. (2002). Nonparametric estimation of 
conditional quantiles using quantile regression trees, Bernoulli, 8, 
561-576. 

[4] Frost, J (2012) How to Identify the Distribution of Your Data 
using Minitab, http://www.scribd.com/doc/84506538/Body-Fat-
Data-for-Identifying-Distribution-in-Minitab. 

[5] [Hao L. &Naiman, D.Q., (2007). Quantile Regression; 01-
Hao.qxd. 3/13/2007.3.28. 

[6] Iwueze, S.I., Nwogu, E.C., Ohakwe, J. & Ajaraogu, J.C. (2011) 
Uses of the Buys-Ballot Table in Time Series Analysis, Applied 
Mathematics Journal. (2) 633-645. 

[7] Koenker, R. (2005). Quantile Regression, Econometric Society 
Monograph Series, Cambridge University Press. (6)6. 

[8] Koenker,R & Bassett, G. (1978); Regression Quantiles, 
Econometrica, Vol. 46, No. 1, pp. 33-50. 

[9] Koenker, R. &D’Orey, V. (1987). Algorithm AS229: Computing 
regression quantiles, Applied Statistics, 36, 383-393. 

[10] Koenker, R. & Machado J.A (1999) Goodness of fit and related 
inference processes for quantile regression. Journal of 
Econometrics, 93, 327-344 

[11] Lee, B.-J. & Lee, M. J. (2006). Quantile regression analysis of 
wage determinants in the Korean labor market, The Journal of the 
Korean Economy, 7, 1-31. 

[12] Loh, W.-Y. (2002). Regression trees with unbiased variable 
selection and interaction detection, Statistica Sinica, 12,  
361-386. 

[13] McMillen, D.P. (2013). Quantile Regression for Spatial Data, 
Springer Briefs in Regional Science. 

 



111 American Journal of Applied Mathematics and Statistics  

[14] Meinshausen, N. (2006); Quantile Regression Forests, Journal of 
Machine Learning Research, (7) 983-99. 

[15] Wen-ShuennDeng,Yi-Chen Lin &JinguoGong (2012) A smooth 
coefficient quantile regression approach to the social capital–
economic growth nexus; Economic Modelling journal 

homepage: www.elsevier.com/locate/ecmod. 
[16] Young, T.M., Shaffer, L.B., Guess, F. M., Bensmail, H. &Leon, 

R.V (2008), A comparison of multiple linear regression and 
quantile regression for modeling the internal bond of medium 
density fiberboard; Forest Products Journal, 58(4). 

 

 
© The Author(s) 2019. This article is an open access article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 


