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1. Introduction

The study of integro-differential equations started in
the fifties with the works of Getoor, Blumenthal, and
Kac, among others. Due to the relation with stochastic
processes, they studied Dirichlet problems of the form

Lu=g(x)inQ
{ 3) : (1.1
u=0inR"\Q

being L the infinitesimal generator of some stochastic
process in the simplest case, L would be the fractional
Laplacian. In 1959, the continuity up to the boundary of
solutions was established, and also some spectral properties
of such operators [1]. For the fractional Laplacian the
asymptotic distribution of eigenvalues was obtained, as
well as some comparison results between the Green's
function in a domain and the fundamental solution in the
entire space [2]. Later, sharp decay estimates for the heat
kernel of the fractional Laplacian in the whole R" were
proved [3], and an explicit formula for the solution of

{(A)S u=1inB;

u=0inR"\B;

(1.2

was found [4,5]. Moreover, Green's function and the
Poisson kernel for the fractional Laplacian in the unit ball
B1 were also explicitly computed by Getoor [6] and Riesz
[7], respectively.

Integro-differential equations arise naturally in the
study of stochastic processes with jumps, and more precisely
of Levy processes. This type of processes, well studied in

Probability, is of particular interest in Finance, Physics, or
Ecology. Moreover, integro-differential equations appear
naturally also in other contexts such as Image processing,
Fluid Mechanics, and Geometry.

To a great extent, the study of integro-differential equations
is motivated by real world applications. Indeed, there are
many situations in which a nonlocal equation gives a
significantly better model than a PDE, as explained next.

Integro-differential equations appear also in Ecology.
Indeed, optimal search theory predicts that predators should
adopt search strategies based on long jumps where prey is
sparse and distributed unpredictably, Brownian motion being
more efficient only for locating abundant prey; see [8,9,10].

The partial integro-differential equation is a part of
integro-differential equations. The number of mathematicians
has been work successfully on the methods for solving
partial integro-differential equations. But yet the date no
one work on partial integro-differential equations involving
mixed partial derivatives.

In this paper we have concentrated on the nonlinear
partial integro-differential equations involving mixed partial
derivatives and develop a solution method for nonlinear
partial integro-differential equations, namely LSM. In
section 2, we have given the description of LSM for nonlinear
partial integro-differential equation and in section 3; we
have solved two nonlinear partial integro-differential equations
by using LSM finally in the last section 4 we have given
the conclusion of this paper.

2. Method of Solution

In this section, we have given the description of
Laplace substitution method [11,12,13] for nonlinear
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partial Integro-differential equations involving mixed partial
derivatives. In the same section, we have consider the
following general form of NPIDE,

-1 -2
qu(x,s)—sq U(x,O)—sq Uy(x,O)

-3
s uW(x,o)...—suyq_2 (x,o)—uyq_1 (x,0)

Lu(x,y)+Ru(x,y)+Nu(x,y) Ly [Ru(xy)+Nu(x,y)]+Ly [f(x,y)]
+ u(x,y)+Nu(x,y)|+ y X,

oYK R*u(x,w) dw f (2.1)

=ajg K(y-w) AN"u(xw) w+f(xy), =aL [ y)JLy [R u(x,y)+Nu(x, y)}
with initial conditions, _U 1 1 1 ]

o (x5) 200 ()~ 501 (X)- 50

=f0(y),ux(0,y)=f1(y)...uxp_2 (0,y)

1 1
“gq-1%-2 (X)——ng ~1(%)
=fp_2(V)U p_1(0y)=Tp 1(¥). ° °

1
o e o AR M) ]
X L _
:go(x),uxpy(x,o):gl(x)...uxpyp_z(x,o) -5 Ly[K(y)]Ly[R u(x,y)+N u(x,y)}.
:gp—Z(X)'uxpyp—l(x'o):gp—l(x)' Taking inverse Laplace transform of above equation

with respect to y, we get
Where K(x, y) and f(x, y) are given functions, o is a

2
n y
constant, L = 0 (p and q are positive integers with U(x.y)-go(x )_ygl(x)_EQZ (X)---
oxPoy q-2 q-1
p + g =n), Ru(x, y) and R*u(x, y) are general linear terms, y “——gq_»( y “——0q_1(x)
Nu (x, y) and N*u (x, y) are nonlinear terms. Equation ) - ) a-

2.1), we can write in the following form,
@) J ——L [Ru (%,¥)+Nu(x,y)+f(xy)]

o™u X,
M+Ru(x,y)+ Nu(x,y) . . ’
axPayd +—Ly[K [R u(x,y)+N u(x,y)}
y R*u(x,w)
=afg Ky-w) dw +f (X, y). X,Y)
+N u(x, w) y2
=gp (X)+ X)+=—05 (X)...
In above nonlinear partial integro-differential equation gO( ) ygl( ) 2! 92( )
we have considered x as an independent variable under q-2 q-1
integral sign. Therefore here we are going to use the +hgq_2(x)+hgq_l(x)
6pu(x,y) o . - -
——— = U substitution in equation (2.1), we get 1
P q (21),weg . __qu[RU(X’y)+ Nu(x,y)+f(x,y)]
L S .
q y o
ﬂ.’-RU(X y)+Nu(x, ) +—qu[K ]L [R u(x,y)+Nu(x, y)]
5yq s
* Re-substitute the value of U(x, y) in above equation, we
R
=ang(y—W) u(x,w) dw +f (X, y). get
+U(X, w)

pU X 2
Fuixy) (’y)=go(><)+y91(><)+%92(x)---

Taking Laplace transform of above equation with oxP
respect to y, we get
LA A
q ——9q-2 —9g-1(X
Lyl%+Ru(x y)+Nu(x, y)] (q 2)r4- (q-2)r°d
oy 1
- o) ) —S—qu[Ru(x,y)+Nu(x,y)+f(x,y)]
u(x,y +L .
=aly | K(Y)* +Ly | T(xy)], Y| o [ * * }
y N, y) y[ J +Sq Ly[K(y)]Ly R u(x,y)+N u(x,y)
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Taking Laplace transform of above equation with respect to x, we get
spu(s,y)—sp_lu(o,y)—sp_zux(O,y)—...—suyp_2(O,y)—uyp_l(o,y)
y2 yd—2 ¥t
=Ly go(X)+yg1(x)+§92(X)---+M9q—2( )+ (q-1) F—9g-1(%)

+L L}l{ SE Ly[Ru(x,y)+Nu(x,y)+f(X,Y)]JFS%Ly[K(Y)]Ly[R*U(X’y)JFN*U(X’y)ﬂ*

1 1 1 1
u(s, y)—gu(o, y)—s—zu(O, y)...—Sp_1 uyp_2 (0, y)—s—puyp_l (0,y)

2

-2 -1
L, [go<x>+ygl<x>+%gz(x)---+%gq_z<x>+%gq_1<x>]

+Ly Lyl[_siq Ly [Ru(x,y)+Nu(x,y)+f(x, y)}Ls% Ly [K(y)]Ly [R*u (%, y)+N"u(x, y)ﬂ

)
2 yq 2 q—1
: A

:sipLx[go(X)wgl(X)*%gZ(X)" (a-2)!

1 ) 1 Ru(x,y) o * *
PN by (N + L TK(y L[Rux,y+Nux,y]
sp X y[ < yLNu(x,y)Jrf(x,y) <4 y[ ()J y (xy) (xy)
Taking inverse Laplace transform of above equation with respect to x, we get
U(X’y)_fo(y)_Xfl(y)_“-_pr—Z(y)_mfp—l(y)
-2 g-1

11 g
=bx it [go(x)ﬂgl(x)ﬂ“%gz(X)~~-+yf_9q—2(@ﬂ“hgq—l(x)l
cotl Ly oy [RGe)eNuGoY)) e [K(y)]L [R*u(x,y)+N*u(x,y)} ,

Xgp XYL g8 Y+ (xy) A Y y

Xp—2 Xp—l
u(x,y) :fo(y)+xf1(y)+....+mfp_2(y)+mfp_1(y)

2 2 -1
+L‘X1LipLx[%(x)wgﬂx)%gz(x)--- L s 2" (f_l)!gq_ﬂx)ﬂ 25

e 1{;} L, {Lgll(_siql'y [Ru(x,y)+Nu(x,y)+f (x,y)}+S%Ly [K(y)] Ly [R*U(X, y)+ N*U(X,Y)}ﬂ}.

Suppose that solution of equation (7.2.1) is in series form

u(x,y)=xpr_ 0 up (X, y). (2.6)

The nonlinear terms, which are appeared in equation (2.1), we can decompose them by using Adomian polynomial
Nu(x,y)=3%_oA, and N*u(x,y):fo:OBn. (2.7)
In above equation A,, and B,, are Adomian polynomials depending on the components ug (X, ¥), Uy (X, ¥)........., Un(X, y), n >

0 of series solution (2.6). Substitute equations (2.6) and (2.7), we get
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=fo(¥)+ ¥ (y)+

_1
q
1 -1 s

Comparing both sides of above equations, we get

xP— 2

ug (%.y) =T (¥)+ ¥ (y)+...+

+L}1{ip Ly {90 (X)+ygg (X)+

S

X | bx| 90 (%) + Y8y () + 5,95 (). +

p X y o * 0
s +S—qu[K(y)]Ly[R (Zn:O

2 yq2

g-1
%QZ(X)'“ (C] 2) gq 2() (y_l)!gq—l(x)”’

xp_1

+r1)!fp—l(y)

q-2 g-1
hgq—Z(x) (); 3% 1(x )ﬂ

_Ly[R(Z(ﬁoz oln (V) +Z7_gAq +1 (X’y)J

Un (x,y))+2‘,’1°: OBn}

-1
) {; LX[L‘ylL%Lymx,yﬂm

(p-2) fo- Z(y)+(q—1

S

11 1 — 1
Uy (X,y)= LX1 L—L {Lyl[—s—q Ly [Rul(x, y)+A1] +

p X

% Ly [K(y)] Ly [R*ul(x, y)+ BJH]

S

*

un(x,y>:L—XlLipLx[L—y{—siqu[Run_1<x,y>+An_1J+S%Ly[K<y)]Ly[R un_1<x,y>+Bn_1}m

From the above equations, we get the following recursive relation

ug (x,¥) =W(x,y)

RPN

Where

xp_2

W(x,y) =T (y)+ ¥ (y)+...+

2 yq

S

+L;(1 !ip Ly [90 (x)+ygq (x)+

From the above recursive relation, we can find the
components of the series solution (2.6). In the recursive
relation (2.9), some time we will use the technique of
Modified Laplace Substitution method, which was we
have explained in [11,12,13].

3. Application of Laplace Substitution
Method

In this section, we have given the applications of Laplace
substitution method for nonlinear partial integro-differential
equations. In the same section we have solved two problems

[Ru (x,y +An 1]+ y[K(y)]Ly[R*un—l(x'y)+Bn—l]ﬂ:I '

~2
%gz(x)...+m

(2.9)

xp_1

i o o]

yd-1
!gq—Z(X)JFqu—l(X) :

by LSM. In both problems for our convenience, we have
used Modified Laplace substitution method.

Example 3.1: Consider the following nonlinear partial
Integro-differential equation

2 x2y4
o°u .y 2 y
y@y—jo(y—w)u (x,w)dw = l—?, (3.1)
with initial conditions,
u(0,y)=0,uy (x,0)=0. (3.2)

As we have explained in section (2), y is an
independent variable under integral sign. Therefore we
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have used substitution U = a%x, in above equation. Then

the above equation becomes,
2.4
ouU u2 X7y
— w X,w)dw =1-——,
5 Iy (xw) -

Taking the Laplace transformation of above equation
with respect to y, we get

sU(x,s)-U(x,0)- Ly (y) Ly [uz (x,y)}
x2 !
-5(5)
SU(X'S)_S%Ly[UZ (x,y):l _g—g[ 4'j

U(x,s)—i3 Ly[u2 (x,y)} :%—g{gj

S S

Taking inverse Laplace transform of above equation
with respect to y, we get

A 2 5
L T2 _ 4ly
U(xy)-Ly Ls Ly[u (X‘y)_}y 12[ 51 ]
Re-substitute the value U(x, y) in above equation, we get
1 2(.5
ou .11 [2 } X“|y
—-Ly | =L, |uc(X, =y-——|—|
x Y [53 y[u"(xy) 17 { 5 J

Taking Laplace transform of above equation with
respect to x, we get

Taking inverse Laplace transform of above equation
with respect to X, we get

u(xy)- LQl[%LX {L?L% Ly[uz(x’y)ﬂﬂ

Suppose that,
u(x.y)=E5_gun (x¥),

is a series solution of equation (3.1). The nonlinear term
appeared in equation (3.1); we can decompose it by using
Adomian polynomial

u2 (x,y)= Z(r’]oz 0An (x,y).

Where A, is an Adomian polynomial depending on the
components Up(X, ¥), Ui(X, y), Us(X, ¥)...... Un(X, y), n > 0.
In this thesis we have found the Adomian polynomials of
equation (3.5) in last some problems. Substitute equations
(3.4) and (3.5) in equation (3.3), we get

(3.9

(3.5)

o0
T up(xy)
n=0
x3y5
180

afelsla ]

Comparing both sides of above equation, during the
comparison we have used MLSM, by splitting the source
term in two part, we get the following equations

ug (x,y)=xy,
Uy (x,y)
i o]
us (%,y)
un (xy)

x3y5
180

+L 1[1LX{LgllLéLy[An_l(x,y)ﬂﬂ,n > 0.

From the above equations, we get the following
recursive relation

=Xy—

Ug (X, y)=xy

3,5

X7y
Un1(xy)=- 180

il

The components of series (3.4), with the help of above
recursive relation are

,n>0%(3.6)

Ug (X, y)=xy,
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Uy (%.y)
3,5 R
xX“y ~111 -1 1
"m0 xSy @ y[Ao(X'y)Jm

3,5 C T
_ Xy 1 -1 1 2
180 x| s x|ty 3Ly[u0(x‘y)}H

3,5 [T
.S AT RO S 2
=—Ta0 t5x [shx| Ly 3 Ly[(xy) }m

3,5 i

xX°y -1/1 -1 1| 22!
=— +L, | =L, | L, | =] X5 —=

180 X |s XY 53{ HH

3
3,5 I
XTyw 1|1 -1| 2 2!
- +L | oLy | Ly xS =
180 X s X| Y| g m

3.5 T
X7y 111 -1 !
- Y e =l O Y Ml VG
180 X s X| 7Y

y5 2'y5 -1| 2
= L —_—
180 5! 4

8y +2,y5 [2X3}:_X3y5 +Xsys

180 51 | 3! 180 180
This implies that , u;(x,y) = 0. From the recursive
relation we observe that
Uy (x,y)=0,vn>1.

Therefore the exact solution of equation (7.3.1) after
substitution of all values of components u, (x,y), ¥V n>0

in equation (7.3.4) is,
u(x,y)=xy.

We have verified this through the substitution.
Example 3.2: Consider the following nonlinear partial
Integro-differential equation

4
o'u 2
+uy (x,y)
oley? Y 3.7)
= jg sin(y—w)[u\%v (x,w)—uy(x,w)}dw +1.
With initial conditions,
u(0,y)=vy,u, (0,y)=0,
(0.y) =y, uy (0.y) @9
uXX(x,0)=2,uXXy(x,0)=O.

Let we use the substitution Uzazu/ax2 in above
equation, we get
2
%+u§(x,y)
oy
; 2
- jgsm(y—w)[uw (x,w)—uy(x,w)}dw +1.

Taking Laplace transform of above equation with
respect to y, we get

s2U(x,s)-sU(x,0)— Uy (x,0)+ Ly[ui(x,Y)}
=Ly/[siny] '—y[“;z/ —uy}+%,

sZU( s)— 25+Ly[ )Zl(xy)}

2 1
_Ly[smy]L [uy y}rg,
L1 2
U(x,s)- 2 Ly[uy }

= 2 y[smy]Ly u%, } (%J
U(x, s) Ly{u }

1
2
2 1+s 53

Taking inverse Laplace transform of above equation
with respect to y, we get

U(x,y)-2+ L}l Liz Ly [u§ (x, y)ﬂ

2

1 1 2 X
L L] [u u H+_,
y{[ 2 1+32J Ly 2!

2+X—2,+|_ (52 1+15 JLy
e,

Re-substitute the value of U(x, y) in above equation, we
get

(L_LJL 2-u,|
fu_, x2 all2 142 ) YUY V]
1 2
_S_ZLy[uy(x,y)}

Taking Laplace transform of above equation with

respect to x, we get
2
2 x°(1
u, (0,y)=2+2—[=
x(0Y) s 2![5]

2

U(x,y)=

s2u (s,y)-

su(0,y)-
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Taking inverse Laplace transform of above equation
with respect to X, we get

u(x,y)-y

(3.9

Suppose that,

u(x,y)=X5_oun (xy), (3.10)

is a required solution of equation (3.7). The nonlinear
term appeared in equation (3.7), we decompose it by using
Adomian polynomial

2

uy(x,y)zz‘r’f:OAn (X,y): (3.11)
Where A, is an Adomian polynomial of components u,(X,
y), n > 0 of series (3.10). Substitute equations (3.10) and
(3.11) in equation (3.9), we get

0
3 un(x,y)
n=0
2.2
2 X7y
=y+xc+——
y 4
o , . ( )}_-
—Lyl X Ap(Xy
1+S2 y n=0 n
1l 1 1 [1 1 ]
L L | L ] e ——
X 32 X1y 52 1+s2
o0
Lyl X Uy (x.y)
L L = n:0 -

Comparing both sides of above equations, we get

uo(x,y)=y+x2,
2.2
_Xy
U (xy) ==,
1
5 Ly [Ao(x,y)J
-1/ 1 -1 1+s
—LX _2LX Ly '
s (12_ 12J|_y[u0(x,y)]
s 1+s
2.2
_xXy
Up (x,y)= i
1
) Ly [Al(x,y)]
) 1 -1 1+s
—LX —2LX Ly L 1 ,
s {_2_ 2JLy[ul(x,y)]
s© 1+s
2.2
Xy
un(x,y)— 4
_ : . o

xLy |:Un—1 (x, y)}

From the above equations, we get the following
recursive relation

Ug(x,y)=y+x

X2y2

4

up (x,y) =

) _
_ZLy[An—l(X’y)]
1+s .(3.12)
-1 -1 1 1

Ly 2|_X Ly J{_Z_ 2]

S 1+s

i XLV[”(nfl)y(X'y)J i

n>0

Let we find the components of series (3.10) by using
above recursive relation

uo(x,y)=y+x2,




279 American Journal of Applied Mathematics and Statistics

2.2
_Xy
U (xy) ==,
1 2
5 Ly[uoy(x,y)}
-1l 1 -1 1+s
-L L,|L :
X | 25Xy 1 1
s + = Ly uoy(x,y)}
32 1+s2
up (x.y)
1
Ly [1]
x2y2 -1 1 -1 1452 y
= - _L L Ll
4 X112 XY 11
; 5 7|yl
s 1+s
2,,2
Xy 1] 1 11 1)1
=7 A]]
2,,2
X7y 1] 1 1] 1
ul(x,y): 4 X _ZLxliLy {_S:H

2.2 2
_Xy° xfy
Uy (x.y) ==, 7
Uy (x,y)=0.

From the recursive relation (3.12), and value of uy(X, y)
=0, we get Uy (X,¥)=0,uz(X,y)=0,....... U (xy)=0,
n>1. Substitute all values of u, (x,y),n>0 in equation
(3.10), we get the required solution of equation (3.7),

u(x,y):y+x2.

This is an exact solution of equation (3.7) with initial
conditions (3.8). We have verified this through the substitution.

4. Conclusion

This paper is nothing but the one more achievement of
LSM. In [11,12,13] we have describe LSM for different order

linear and nonlinear partial differential equations involving
mixed partial derivatives and applied it successfully to number
of linear and nonlinear problems. In this paper we have
applied same method for nonlinear partial integro-differential
equations involving mixed partial derivatives. It gives the
exact solution with less computation. The main advantage
of this method is the fact that it gives the analytical
solution. In the above examples we observed that the LSM
with the initial conditions yield an exact only in a few
iterations. It is also worth noting that the advantage of the
decomposition methodology displays a fast convergence
of the solutions. The illustrations shows the dependence of
the rapid convergence depend on the character and behavior
of the solutions just as in a closed form solutions. It is
shown that this method is a promising tool for the linear
and nonlinear partial integro-differential equations involving
mixed partial derivatives.
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