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references. 
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1. Introduction 

In 2000, Hitzler and Seda [2] have introduced the 
notion of dislocated metric space(also called d-metric 
space) and established some fixed point theorems in 
complete dislocated metric spaces, dis-located metric space 
plays an important role in Topology, Logical programming 
and in electronics engineering. In 2003, Kirk et al. [5] 
have introduced the notion of cyclic contraction and they 
obtained some fixed point theorems for cyclic contractions 
in dislocated metric spaces. In 2013, George et al. [1] have 
obtained some fixed point results on d-cyclic contractions 
in dislocated metric spaces. In this paper, we obtain a 
unique fixed point theorem for a generalized d-cyclic 
contraction in dislocated metric spaces. 
Definition 1.1 [2]. Let X be a non-empty set and let d:X × 
X→[0,∞) be a function satisfying the following conditions 

(d1)d(x, y) = d(y, x). 
(d2)d(x, y) = d(y, x) = 0 ⇒ x = y. 
(d3)d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. 
Then d is called dislocated metric or d-metric on X.  

Definition 1.2 [2]. A sequence {xn} in a d-metric space  
(X, d) is called a Cauchy sequence if for given ∊ > 0,  
there exists n0 ∊ℕ such that for all m, n ≥ 0, we have  
d(xm, xn) < ϵ. 
Definition 1.3 [2]. A sequence {xn} in a d-metric space  
(X, d) d-converges with respect to d if there exists x∊X 
such that d(xn, x) → 0 as n→∞. In this case x is called 
limit of {xn}( in d) and we write xn → x.  
Definition 1.4 [2]. A d-metric space (X, d) is called  
d-complete if every Cauchy sequence in it is d-convergent. 
Definition 1.5 [5]. Let A and B be non-empty subsets of a 
metric space (X, d). A cyclic map  

T: A ∪ B →A ∪ B is said to be cyclic map if T(A) ⊂ B 
and T(B) ⊂ A. 
Definition 1.6 [5]. Let A and B be non-empty subsets of a 
metric space (X, d). A cyclic map T:A ∪ B →A ∪ B is 

said to be a cyclic contraction if there exists k∈(0,1) such 
that d(Tx, Ty) ≤ kd(x, y) for all x∈A and y ∈ B. 

We define a generalized d-cyclic contraction mapping 
in the following way. 
Definition 1.7. Let A and B be non-empty subsets of a  
d-metric space (X, d). A cyclic map T:A ∪ B →A ∪ B is 
said to be a generalized d-cyclic contraction if there exists 
α, β, γ > 0 satisfying α + 2β + 4γ < 1 such that  
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for all x ∈A and y ∈ B. 

2. Fixed Point Theorem 

Theorem 2.1. Let (X, d) be a complete d-metric space, A 
and B be non-empty subsets of X and T:A ∪ B →A ∪ B 
be a generalized d- cyclic contraction in X. Then T has a 
unique fixed point in A ∩ B. 
Proof. Fix x ∈ A. By the definition 1.7 there exists α, β,  
γ > 0, α + 2β + 4γ < 1 such that 
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Where, b = (α + β + 3 γ) /1- (β+ γ) < 1. 

 ( ) ( )2d T x,Tx bd Tx, x .≤  

By induction, we have d(Tn+1x, Tnx) ≤ bn d(Tx, x), more 
generally, for m>n, we have 
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Since, b < 1, so as m, n → ∞ we have 

 ( )n 2 m n 1b 1 b+b b 0.− −+ +…+ →  

Hence, d(Tmx, Tnx) → 0 ,as m, n → ∞. 
Therefore, {Tnx} is a Cauchy sequence. Since (X, d) is 

complete so {Tnx} converge to some point z ∈ X. Since 
{T2nx} ⊆ A and {T2n-1x} ⊆ B and so z ∈ A ∩ B. 

We claim that Tz = z. 
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Taking limit n→∞, we obtain 
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Thus, z is a fixed point. 
To show the uniqueness, let us assume that there  

exists two fixed points say z1 and z2 such that Tz1 = z1 and 
Tz2 = z2. 

Now,  
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Since, α + 2β + 2γ < 1. 
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Therefore, T has a unique fixed point in A ∩ B. 
This completes the proof of the theorem. 

Remark 2.2. If we choose β = γ = 0 in the above theorem 
then we get the d-cyclic contraction theorem3.3 in [1]. 
Remark 2.3. If we choose α = γ = 0 in the above theorem 
then we get the Kannan type d-cyclic contraction 
theorem3.6 in [1]. 
Remark 2.4. If we choose α = β = 0 in the above theorem 
then we get the Chatterjee type d-cyclic contraction 
theorem3.8 in [1]. 

3. Conclusion 

The above Theorem 2.1 is a generalization of  
Theorems 3.3., 3.6., and 3.8., in [1]. 
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