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Abstract  The exponential distribution is considered in situtations where intervals between events are considered 
as well as where a skewed distribution is appropriate. The exponential distribution also plays key role in survival 
analysis. Goodness-of-fit for exponentiality is crucial as, in the natural sciences, some of the commonly used 
distributions such as gamma and Weibull distributions are just translated versions of the exponential distributions. 
Several well known exponentiality tests are reviewed. A power comparison is performed using simulation. 
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1. Introduction 

Assessing whether a data set is in compliance with a 
postulated distribution is termed as goodness-of-fit of a 
distribution. Tests for exponentiality is the general term 
for goodness-of-fit tests for exponential distributions. An 
exhaustive list of references for goodness-of-fit tests for 
exponential distributions are given in N. Balakrishnan and 
Asit P. Basu [1], K. Yu. Volkova [2], A. P. Rogozhnikov 
and B. Yu. Lemeshko [3], and the references there in. 

In this paper, we implement several exponentiality  
tests, such as, Test for exponentiality based on Ahsanullah 
characterization [4,5], Atkinson test for exponentiality [6], 
Cox and Oakes test for exponentiality [7], Cramervon 
Mises test for exponentiality [7], Deshpande test for 
exponentiality [8], Test for exponentiality of Epps and 
Pulley ([7] section 2.8.1), Epstein test for exponentiality 
[9], Frozini test for exponentiality [10], test for 
exponentiality based on the Gini statistic [11], Gnedenko 
F-test of exponentiality [9], Harris modification of 
Gnedenko F-test [9], Hegazy-Green test for exponentiality 
[12], Hollander-Proshan test for exponentiality [13], 
Kimber-Michael test [14] and [15], Kochar test for 
exponentiality [16], Kolmogorov-Smirnov test ([7] section 
2.1) forexponentiality, Lorenz test for exponentiality [17], 
Moran test for exponentiality [18,19], Pietra statistic [9], 
exponentiality based on Rossberg characterization [2], 
Shapiro-Wilk test for exponentiality [20], WE test for 
exponentiality [9], Wong and Wong test for exponentiality 
[9], and Anderson-Darling test for exponentiality [21]. 

2. Tests Descriptions 

2.1. Test for Exponentiality Based on 
Ahsanullah Characterization 

The test is based on the following statistic by Alexey 
Novikov and Ruslan Pusev, 
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[4,5]. This test can be implemented either using the 
asymptotic normal distribution or using the simulated 
distribution under the exponentiality assumption. Here we 
represent them as AHTT and AHTS, respectively. 

2.2. Atkinson Test for Exponentiality 
The Atkinson test for exponentiality is based on the 

following statistic [6], 
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The statistic is asymptotically (absolute) normal, 
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This test can be implemented either using the 
asymptotic normal distribution or using the simulated 
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distribution under the exponentiality assumption. Here we 
represent them as AKTT and AKTS, respectively. 

2.3. Test for Exponentiality of Cox and Oakes 
The Cox and Oakes test is a test for the composite 

hypothesis of exponentiality [7]. The test statistic is, 
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where / .j jY X X=  ( ) ( )1/26 / /nn CO π  is asymptotically 
standard normal [7]. This test can be implemented either 
using the asymptotic normal distribution or using the 
simulated distribution under the exponentiality assumption. 
Here we represent them as COTT and COTS, respectively. 

2.4. Cramer-von Mises Test for 
Exponentiality 

The Cramer-von Mises test for exponentiality (Henze 
and Meintanis [7] is based on the following statistic, 
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where nF  is the empirical distribution function of the 

scaled data / .j jY X X=  The p-value is computed by 
Monte Carlo simulation. Here we represent the test as 
CMTS. 

2.5. Deshpande Test for Exponentiality 
Deshpande test for the composite hypothesis of 

exponentiality [8], is based on the following statistic, 

 
( ) { }1 1 .

1 i j
i j

J x bx
n n ≠

= >
− ∑  

Under exponentiality, one has 

 ( )1
1 0,4 , ,

1
n J as n

b
ζ − → →∞ + 

   

where 

 

( )

( )

1

2 2

2 111
2 2 1 11 .2 44

1 1

bb
b b b

b
b b b

ζ

− 
+ + + 

+ + + =  
− −  + + + 

 

This test can be implemented either using the 
asymptotic normal distribution or using the simulated 
distribution under the exponentiality assumption. Here we 
represent them as DPTT and DPTS, respectively. 

2.6. Test for Exponentiality of Epps and 
Pulley 

The test statistic is 
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where / .j jY X X=  nEP  is asymptotically standard 
normal ([7] section 2.8.1). This test can be implemented 
either using the asymptotic normal distribution or using 
the simulated distribution under the exponentiality 
assumption. Here we represent them as EPTT and EPTS, 
respectively. 

2.7. Epstein Test for Exponentiality 
The test [9] is based on the following statistic: 
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where  

 ( ) ( ) ( )( )11 ,i i iD n i X X −= − + −   

0 0,X =  ( ) ( )1 nX X≤ ≤  are order statistics. Under 

exponentiality, EPSn is approximately distributed as a  
chi-square with 1n −  degrees of freedom. This test can  
be implemented either using the asymptotic normal 
distribution or using the simulated distribution under the 
exponentiality assumption. Here we represent them as 
ESTT and ESTS, respectively. 

2.8. Frozini Test for Exponentiality 
The Frozini test for exponentiality is based on the 

following statistic [10], 
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The p-value is computed by Monte Carlo simulation. 
Here we represent the test as FRTS. 

2.9. Test for Exponentiality Based on the Gini 
Statistic 

The test is based on the Gini statistic, 
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Under exponentiality, the normalized statistic 

( )( ) ( )1/212 1 0.5nn G− −  is asymptotically standard 
normal [11]. This test can be implemented either using the 
asymptotic normal distribution or using the simulated 
distribution under the exponentiality assumption. Here we 
represent them as GSTT and GSTS, respectively. 

2.10. Gnedenko F-test of Exponentiality 
The test [9] is based on the following statistic, 
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where  

 ( ) ( ) ( )( )11 ,i i iD n i X X −= − + −   

( )0 0,X =  ( ) ( )1 ... nX X≤ ≤  are order statistics. Under 

exponentiality, ( )nQ R  follows an F distribution with 2R  

and ( )2 n R−  degrees of freedom. Here we represent the 
test as GNTT. 

2.11. Harris modification of Gnedenko F-test 
The test [9] is based on the following statistic, 
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where  

 ( ) ( ) ( )( )11 ,i i iD n i X X −= − + −  

( )0 0,X =  ( ) ( )1 ... nX X≤ ≤  are order statistics. Under 

exponentiality, ( )nQ R  follows an F distribution with 4R  

and ( )2 2n R−  degrees of freedom. Here we represent the 
test as HGTT. 

2.12. Hegazy-Green Test for Exponentiality 
The Hegazy-Green test for exponentiality [12] is based 

on the following statistic, 
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The p-value is computed by Monte Carlo simulation. 
Here we represent the test as HFTS. 

2.13. Hegazy-Green Test for Exponentiality 
The Hegazy-Green test for exponentiality [12] is based 

on the following statistic, 
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The p-value is computed by Monte Carlo simulation. 
Here we represent the test as HRTS. 

2.14. Hollander-Proshan Test for 
Exponentiality 

The test [13] is based on the following statistic, 
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This test can be implemented either using the 
asymptotic normal distribution or using the simulated 
distribution under the exponentiality assumption. Here we 
represent them as HPTT and HPTS, respectively. 

2.15. Kimber-Michael Test for Exponentiality 
The Kimber-Michael test [14,15] for exponentiality is 

based on the following statistic, 
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The p-value is computed by Monte Carlo simulation. 
Here we represent the test as KMTS. 

2.16. Kochar Test for Exponentiality 
The Kochar test for exponentiality [16] is based on the 

following statistic, 
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The statistic T is asymptotically standard normal. This 
test can be implemented either using the asymptotic 
normal distribution or using the simulated distribution 
under the exponentiality assumption. Here we represent 
them as KCTT and KCTS, respectively. 

2.17.  Kolmogorov-Smirnov Test for 
Exponentiality 

The Kolmogorov-Smirnov test ([7] section 2.1) for 
exponentiality is based on the following statistic, 
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where, nF  is the empirical distribution function of the 
scaled data / .j jY X X=  The p-value is computed by 
Monte Carlo simulation. Here we represent the test as 
KSTS. 

2.18. Lorenz Test for Exponentiality 
The Lorenz test for exponentiality [17] for exponentiality 

is based on the following statistic, 
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The statistic ( ) ( )( )1 log 1n L p p p− − − −  is 
asymptotically standard normal. This test can be 
implemented either using the asymptotic normal 
distribution or using the simulated distribution under the 
exponentiality assumption. Here we represent them as 
LZTT and LZTS, respectively. 

2.19. Moran Test for Exponentiality 
The Moran test for exponentiality [18,19] is based on 

the following statistic, 
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where, where γ  is Euler-Mascheroni constant. The 
statistic is asymptotically normal, 
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This test can be implemented either using the 
asymptotic normal distribution or using the simulated 
distribution under the exponentiality assumption. Here we 
represent them as MRTT and MRTS, respectively. 

2.20.  Test for Exponentiality Based on the 
Pietra statistic 

The test is based on the following Pietra statistic [9], 
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The p-value is computed by Monte Carlo simulation. 
Here we represent the test as PSTS. 

2.21.  Test for Exponentiality Based on 
Rossberg Characterization 

The test is based on the following statistic [2], 
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where nF  is the empirical distribution function, 

 
( ) ( ) { } { }{ }13

2, , , 1, , ,
1

1 ,

0,

n n i j k i j k
i j k n

H t C X X t

t

−

≤ < < ≤
= − <

≥

∑
 

 ( ) ( ) ( ){ }12

1
1 min , 0.n n i j

i j n
G t C X X t t

−

≤ < ≤
= − < ≥∑  

Here { }2, , , , 1, 2,i j kX s =  denotes the ths  order statistic 

of ,iX  ,jX  .kX  The p-value is computed from the limit 
null distribution. Under exponentiality, one has 
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This test can be implemented either using the 
asymptotic normal distribution or using the simulated 
distribution under the exponentiality assumption. Here we 
represent them as RCTT and RCTS, respectively. 

2.22. Shapiro-Wilk Test for Exponentiality 
The Shapiro-Wilk test for exponentiality [20] is based 

on the following statistic, 
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The p-value is computed by Monte Carlo simulation. 
Here we represent the test as SWTS. 

2.24. Wong and Wong Test for Exponentiality 
The Wong and Wong test for the composite hypothesis 

of exponentiality [9] is based on the following statistic, 
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where ( )1X  and ( )nX  are the smallest and the largest 

order statistics respectively. The p-value is computed by 
Monte Carlo simulation. Here we represent the test as 
WWTS. 

2.25. Anderson-Darling Upper Tail Test 
Anderson-Darling upper tail test is based on the statistic 

[21] 
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where 1 XiiZ e−= −  and iX  is the thi  ordered measurement 
in the sample. The p-value is computed by Monte Carlo 
simulation. Here we represent the test as ADTS. 

3. Power Comparison 

Samples are generated from standard exponential 
distribution to check whether the proportions of rejections 
match with the respective levels of siginificances. And 
samples are generated from some selected alternative 
distributions, such as, standard Uniform (0, 1), standard 
half-normal, Weibull (1.0, 1.4), Gamma (2.0, 1.0), Beta 
(2.0, 1.0), Gamma (0.5, 1.0), and Log Normal (0.0, 0.8), 
distributions to investigate how powerful the tests are. We 
have considered sample sizes, 12, 20, and 28. Levels of 
significances considered are 1%, 5%, and 10%. In each 
cases, 10,000 samples are considered. 
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Table 1. Abbreviations of the Tests 

 

Table 2. Test Performance Summary 
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Table 3. Rejection Proportions for Standard Exponential Data 

 
⊗ on the right panel indicates very low power, robust against the alternative considered. The more ⊗s the lower the power. 

Table 4. Rejection Proportions for Standard Uniform Data 

 
⊗ on the right panel indicates very low power, robust against the alternative considered. 
★ on the left panel indicates large power and the more ★s the larger the power. 
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Table 5. Rejection Proportions for Standard Half Normal Data 

 
⊗ on the right panel indicates very low power, robust against the alternative considered. 
★ on the left panel indicate large power and the more ★s the larger the power. 

Table 6. Rejection Proportions for Weibull (1,1.4) Data 

 
⊗ on the right panel indicates very low power, robust against the alternative considered. 
★ on the left panel indicates large power and the more ★s the larger the power. 
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Table 7. Rejection Proportions for Gamma (2,1) Data 

 
⊗ on the right panel indicates very low power, robust against the alternative considered. 
★ on the left panel indicates large power and the more ★s the larger the power. 

Table 8. Rejection Proportions for Beta (2,1) Data 

 
⊗ on the right panel indicates very low power, robust against the alternative considered. 
★ on the left panel indicate large power and the more ★s the larger the power. 
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Table 9. Rejection Proportions for Gamma (0.5,1) Data 

 
⊗ on the right panel indicates very low power, robust against the alternative considered. 
★ on the left panel indicates large power and the more ★s the larger the power. 

Table 10. Rejection Proportions for Log Normal (0, 0.8) Data 

 
⊗ on the right panel indicates very low power, robust against the alternative considered. 
★ on the left panel indicates large power and the more ★s the larger the power. 
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In Table 3, when samples are taken from the standard 
exponential distribution (null distribution), the levels of 
significances are closely estimated for the tests AKTS, 
COTS, CMTS, DPTS, EPTT, EPTS, ESTT, ESTS, FRTS, 
GSTT, GSTS, GNTT, HGTT, HFTS, HRTS, HPTS, 
KMTS, KCTS, KSTS, LZTS, MRTS, SWTS, WETS, 
WWTS, and ADTS. The tests PSTS and RCTS are also 
closely estimating the levels of significances with 
exceptions for smaller samples. Tests AHTT, AKTT, 
DPTT, KCTT, and MRTT are not estimating the levels of 
significances closely. Tests AHTS, HPTT, LZTT, and 
RCTT are wrongly estimating the levels of significances 
always as zeros or very close to zeros. 

In Table 4, when samples are taken from standard 
uniform distribution, the worst performing tests are, 
AHTS, HFTS, HRTS, HPTT, LZTT, RCTT, and SWTS, 
their rejection proportions are zeros or close to zeros. 
Tests AKTT, AKTS, COTT, COTS, DPTT, DPTS, EPTT, 
EPTS, FRTS, GSTT, GSTS, GNTT, HPTS, KMTS, PSTS, 
and WETS, have some decent powers at least for higher 
samples. Tests AHTT, KCTT, and ADTS have high 
powers, among them KCTT has highest powers for all 
sample sizes and for all levels considered. 

In Table 5, when samples are taken from standard half 
normal distribution, the worst performing tests are, AHTS, 
HFTS, HRTS, LZTT, RCTT, and SWTS, their rejection 
proportions are zeros. Tests AHTT, and KCTT have high 
powers, between them KCTT has highest powers for 
higher sample sizes and for higher levels of significances. 

In Table 6, when samples are taken from Weibull 
(1.0,1.4) distribution, the worst performing tests are, 
AHTS, HFTS, HRTS, HPTT, LZTT, RCTT, SWTS, and 
WWTS, their rejection proportions are zeros or close to 
zeros. Tests AKTT, COTT, COTS, DPTT, DPTS, EPTT, 
EPTS, FRTS, GSTT, GSTS, GNTT, HPTS, KCTS, LZTS, 
MRTT, MRTS, PSTS, WETS, and ADTS have some 
decent powers at least for higher samples and higher 
levels of significances. Tests AHTT, and KCTT have high 
powers, between them KCTT has highest powers for 
higher sample sizes and for higher levels of significances. 

In Table 7, when samples are taken from Gamma 
(2.0,1.0) distribution, the worst performing tests are, 
AHTS, ESTT, ESTS, HPTT, LZTT, RCTT, SWTS, and 
WWTS, their rejection proportions are zeros or close to 
zeros. Tests AKTT, AKTS, COTT, COTS, DPTS, EPTT, 
EPTS, FRTS, GSTT, GSTS, GNTT, HPTS, KCTS, LZTS, 
MRTT, MRTS, RCTS, and WETS have some decent 
powers at least for higher samples and higher levels of 
significances. Tests DPTT, KCTT, PSTS, and ADTS have 
some good powers at least for higher samples and higher 
levels of significances. Tests AHTT, HFTS, and HRTS 
have high powers, among them HFTS has highest powers for 
higher sample sizes and for higher levels of significances. 

In Table 8, when samples are taken from Beta(2.0,1.0) 
distribution, the worst performing tests are, AHTS, HFTS, 
HRTS, LZTT, RCTT, SWTS, and WWTS, their rejection 
proportions are zeros or close to zeros. Tests HGTT and 
HPTT have some decent powers at least for higher 
samples and higher levels of significances. Tests AKTT, 
AKTS, COTT, CMTS, ESTT, ESTS, KMTS, and KSTS, 
have high powers at least for higher samples and higher 
levels of significances. Tests AHTT, COTS, DPTT, DPTS, 
EPTT, EPTS, FRTS, GSTT, GSTS, GNTT, HPTS, KCTT, 

KCTS, LZTS, MRTS, PSTS, RCTS, WETS, and ADTS 
have very high powers, among them AHTT, DPTT, EPTS, 
FRTS, GSTT, GSTS, HPTS, KCTT, PSTS, WETS, and 
ADTS have highest powers irrespective of sample sizes 
and levels of significances. 

In Table 9, when samples are taken from Gamma 
(0.5,1.0) distribution, the worst performing tests are, 
AHTS, GNTT, HGTT, HFTS, HRTS, HPTT, LZTT, PSTS, 
RCTT, and ADTS, their rejection proportions are zeros or 
close to zeros. Tests AKTT, AKTS, DPTT, DPTS, EPTT, 
EPTS, FRTS, GSTT, GSTS, HPTS, KCTS, KSTS, RCTS, 
SWTS, and WETS have some good powers at least for 
higher samples and higher levels of significances. Tests 
CMTS, KMTS, LZTS, and WWTS have good powers at 
least for higher samples and higher levels of significances. 
Tests COTT, COTS, MRTT, and MRTS, have high 
powers, among them MRTT and MRTS have highest powers 
irrespective of sample sizes and levels of significances. 

In Table 10, when samples are taken from Log 
Normal(0,0.8) distribution, the worst performing tests are, 
AHTS, ESTT, ESTS, HPTT, KMTS, LZTT, RCTT, 
SWTS, and WWTS, their rejection proportions are zeros 
or close to zeros. Tests DPTS, FRTS, HFTS, MRTS, and 
RCTS have some decent powers at least for higher 
samples and higher levels of significances. Tests DPTT 
and KCTT have good powers at least for higher samples 
and higher levels of significances. Only AHTT have some 
high powers irrespective of sample sizes and levels of 
significances. 

4. Concluding Remarks 

Overall worst performing tests are Ahsanullah 
characterization test using simulation (AHTS), Hegazy-Green 
test using simulation (HFTS), Hegazy-Green alternative 
test using simulation (HRTS), Lorenz test using normal 
approximation (LZTT), Rossberg characterization test 
using normal approximation (RCTT), Shapiro-Wilk test 
using simulation (SWTS), and Wong and Wong test using 
simulation (WWTS). These tests do not estimate the levels 
of significances correctly and have very low powers 
against the alternatives considered here. 

Ahsanullah characterization test using normal 
approximation (AHTT) and Kochar test using normal 
approximation (KCTT) have high powers except for 
Gamma distribution with parameters 0.5 and 1.0. A few 
other tests also show higher powers but for some selected 
alternatives. 
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