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1. Introduction

A variety of problems in different fields of science and
technology require to find the solution of nonlinear
equations. Iterative methods such as Newton’s method are
the most used technique. In this paper, we consider a new
family of combined iterative methods to find a simple root

& of a nonlinear equation f(x)=0, where f is a real

function f :l < R — R, defined in an open interval 1 .

The well-known numerical method for the calculation
of & is the classical Newton’s method as given by

M,nzoyl,..., (1)

f'(xn)
where X; is an initial approximation that is sufficiently

close to & . The convergence order of the classical

Newton's method is quadratic for simple roots and linear
for multiple roots.

Recently, a number of authors including [1-6] have
derived new variants of Newton’s methods that offer
higher order convergence. These methods are frequently
composed of more than two formulas and derived in
different ways.

In [6] some fifth order modifications of Newton’s
method which is extending a general form of third order
method are considered. In a similar way, some sixth-order
class of modified Ostrowski’s methods [7] that improves

Xn+1 = Xn —

the order of convergence of Ostrowski’s method are
presented as follows

f (%) f(¥n)
F(0)=2f (va) T'(%0) @
f(zn)
"(Xn)

Zn=Yn—

Xni1 =2y —H (Vy)

—h

where v, =T and H(t) is a real-valued function

for H(0)=1, H'(0)=2 and H"(0) <.
Described below in equation (3) is the three-point sixth-

order method [8], which requires only two derivatives and
two functions:

f (%)
Yn =Xn f’(xn),
_&, (3)
f'(xy)+ f'(yn)
‘=2 - /(%) + f'(vn)  F(2zn) .
3'(yn) = (%) (%)
This is a three-step method. The first and the second

equations of equation (3) compose a third-order method
developed by the authors in [9].

Zy =Xy
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It is worth noting that equations (2) and (3) use the
technique that consists in applying of new function on the
existing iterative schemes. Motivated by the activities in
this direction, in this paper, our special attention is paid to
the development of a general class of higher-order
combined iterative methods. The important feature of our
methods is only to add the evaluation of the function at
another point. However, their convergence order can be
improved and increased above the original level.

This paper is organized as follows. In section 2, the new
methods are formulated, and the local convergence
theorem is established. Some concrete iterative methods
are discussed in section 3. In section 4, the new methods
are verified through a number of numerical examples,
comparisons of results are also reported to show the
effectiveness of the present approach. Finally, the paper
ends with conclusions in section 5.

2. The Methods and Analysis of
Convergence

Let ¢(x; f(x), f'(x), f'(y)) be a function from
R — R with the information f , f’ at x and y, this

means that the functions f(x), f'(x) and f'(y) at each

iteration step are required to evaluate in the computation
of ¢ . Now we consider the modification of Newton's

method as given below

Zy :¢(Xn? (%), £/(%n), f'(yn))’
f(z,) (4)
t'(z0)’

where  z, =¢(x; f(x), f'(x), f'(y)) represents any

Xn+l =Zn —

iterative method whose order of convergence is at least m.

In recent years, a type of multipoint iterative methods
have been proposed [9-11]. These methods can be viewed

as obtained by approximating f'(z,) with the
expressions &g (X, ), -+, a (X,) , where the function
f'(z,) is defined as

f'(z0) = (Xn: 81(Xn )-8 (Xq))- (5)

Analogously, in order to derive the new methods, we
consider the expression

f'(z)=Af"(x,)+Bf'(yy)

+Cf(zn)+Df’[%} ©

for application of the method of undetermined coefficients.

Expand the terms f'(z,), f'(y,). fv(XnZYnj and

f (z,) about the point x, up to the third derivatives and

collect terms. Upon comparing the coefficients of the
derivatives of f at x,, we get

A+B+aC+D =1 @)
C=0, ®
Bﬁ+c—‘”2+lop’—a 9)
2 2 ’
2 3 2
%+Ci+£Dﬂ2:a_, (10)
2 6 8 2

where o =z, X, and =y, —X,.
Solving equations (7)-(10), we have

2 2
A=ﬁ_3i#, (11)
2
B= _“ﬂ;zz“ , (12)
C=0, 13
4(aﬂ—a2)

Substituting equations (11)-(14) into equation (6), we
obtain

ﬁz —3aﬂ+2a2)
,32
5.2
—(aﬂﬂ#)f’(yn) (15)
I (),
s 2

By using the arithmetic mean of f'(x,) and f'(y,)

f’(zn)z(

f'(%n)

instead of the midpoint value f'(%) in equation

(15), we have

o BeB) e
)= ) D). 9

Substituting equation (16) into the second step of
equation (4), we propose a higher-order family of
combined iterative methods in the following form:

20 =¢(x; (), '(x), '(¥)).
B2 (z) (17)
(57 -aB) (%) + BT (yn)

For this family of methods, the following result can be
established.

Theorem 2.1. Let us suppose that f(x) is a sufficiently

Xn4l =Zn—

differentiable function and f (x) has a simple zero &. If
the initial guess xy is close enough to & and iteration
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function satisfies

Zn==¢(Xn;f(xn)*f,(xn)’f,(yn))

condition

z, - & = Aegp) +O(e,T+l). (18)

If m<3, then the sequence {x} generated by
equation (17) is of order at least 2m.

If m>3, then the sequence {x} generated by
equation (17) is of order at least m+3.

Proof. Let e,=x,—-¢ and d, =z,-¢& . Using the
Taylor expansion and taking into account f(§):0, we
arrive at

f(xn):f'(g)[en+cze§+c3eﬁ+c4e;‘+c5e§ 9
19

+Ceeg + c7e,Z + O(eﬁ )}

f'(x,)=f ’(5)[1+ 2c,€, +3cge2 + 4c,e> +5esen 0
+6c6eﬁ +7c7eﬁ +O(eg )J

k
where ¢, :f—(a).
k1f'(«)
By simple calculations, we have
f (%)

yn :Xn_ f,(xn)

=§+cze§ +2(03 —cg)eﬁ

+ (403 —7CyC3 +3C4 )e,ﬂ1

+ (—80§1 + 2Oc§c3 - 603? —10c,c,4 +4c5 )eﬁ

+ (16c§’ —52c3c, +28c,4¢5 —13c5C, +33c2c,  (21)
+5c5 —17¢5c4 )€l + (—32053 +128c3c3 —72¢3¢,
—126c32,c§ + 36c5c§ +92¢,C3C4

+6C; —16C,Cq —12¢7

+27c§> +5C3C5 — 90§ - 27c3c5)eg + O(eﬁ )
f'(yy)=f ’(5)[1+ 2c5e2 —4c, (cg —cs)eﬁ
- (1lc§c3 —8<:§1 —6CyCy )er‘]1
—4c, (403’ —7c2cy +5¢,¢, —205)eﬁ (22)
+20(16¢3 —40c3c +30c3¢4 13,5

+12¢,¢2 +5cq —80304)eﬁ +O(ez )J

f(zy)= f'(é)[dn +c2d§+o(d§)] (23)

o =17y — Xy =—€ +(2, = &), (24)

p= Yn —*n
=—€, +c2e§ + 2(03 —c%)eﬁ
+ (403 —7CyC3 + 3c4)e§
+ (—8c§1 + 200§c3 - 6c§ —10c,c, +4cs )e;:’
+ (1603 - 520203 + 2804c§ —13c5C,
(25)
+330§c2 +5¢q —17(:3c4)e,‘15
+ (—32c‘25 +128chcs —72¢3¢,
—126c§c§ + 36(:505 +92C,C3C4
~16¢,Cg —123 +6¢,
+ 27c§°’ +5C3C5 —90@0’ - 270305)er7] +0 (eﬁ )
Hence, we obtain
ﬁz = eﬁ - Zczeﬁ + (5(:% —403)ef{
+ 6(302c3 - ch —Cy )e,?
+ (280§1 - 620§c3 +26C,Cy +ch§ —805)e,(15
+(~6403 +188¢3 c3 88,5 +34c,c
2 203 4C2 25
(26)
—~106c,c2 —10cq + 46¢5C, ) e/
+ (144c§3 —528cAc, +264c3c, +471c2c2
~114c5c5 —300c,C3C, +42C,Cq +33c7

-12¢; - 60c§ + 600305)e§ +o(e2),

af =¢, [(1+ cody e, —(c2 —2(03 —c%)dn)eﬁ

—(2(03 —CS)—(4C§ —7c,yC3 +3c4)dn )eﬁ

- (4c:2‘1 —7CyC3+3C4 ) e,‘;'

- (ch - 20c§cg +6c§ +10c,c, — 405)dne,‘11

+ (8c§' - 200%03 +60§ +10c,c4 —4cCs ) e,?
+(16c§ —52¢3c, +28c2c, —13¢,Cs ©7)
+3302c§ +5¢Cg —17c3c4)dneﬁ

- (16c§ —52c3c, + 28¢3c,

+330,C5 +5C5 —17C5¢4 ) €5

+ (32c§s —1280303 +1260§c§ - 360§c5 +16C,Cq
+120§ —6¢; —13c,C5 + 72c§c4 —92¢,C3C4
—180§ + 2203c5)e; - dn]+0(e2 )

We then have
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B -apf= e dy —czdneﬁ —(02 + 2(03 —c%)dn)eﬁ
+ ((3(:% —-2c3 )—(405’ —7CyC3+3cy ) dy )e;1
+((1102c3 —8c§’ —304)
+(80§1 —4cg - 20c§c3 + 6032 +10c204)dn )ers,
+(20¢3 — 405 ~4203cs +16c,c4 +1005 ) ef (28)
- (48c§’ —~136c3¢5 + 60c3¢, — 21¢,C5 + 73¢,C3
+5Cq — 2954 )€/, + (112c2 — 400cic; +192c3c,
+345¢5¢ — 78cZcg — 208¢,C5C4 + 26C,Cq + 21¢2

—6c; — 42c§’ +38¢5C5 ) eﬁ +0 (eg )

Thus, from equations (20), (22), (27) and (28), we
attain

(ﬁ2 ~ap) (%)= f’(f)[endn +¢yd, 62
—(cp —cgdp )€ ((c§—2<:3)+c4dn)e,‘11
+((4czc3 —2c3 —304)+c5 dn)e
+ (4c2 —11c2 C3+6CyCy +403 - 405)en
(8(:2 +5Cg — 28C3Cq +16C2C4 —8C,Cx (29)
+20c,c5 ~12c5¢4 )€
+ (16053 - 680§1 C3+ 400304 + 730503% - 210505

—6¢ —1203 —58c,c3¢4 +10c,Cq + 905

+16c4C5 ) e +O (eg )}

apt'(yn)= f’(é)[—dnen +(L+c,d,, )€
Cy— 2(03+202)dn)eﬁ

+ 402 —2c3) + 10c2 —11c,c4 +3C4)d )e;1

12c503 —6¢5 —10c,C4 +465 ) d, ) en

—(
{
+( 11cyc3 —10¢3 -3c4)
a
+(24c2 —~39c3cq + 663 +16C,¢, —4c5)ed  (30)
—(56c2 ~121c3c, +60c3c,
—21cyC5 + 4lczc§ +5C5 —17¢C3C4 )e,z
+ (128c§s —358c4c; +196c3c, + 212c2¢2
- 7805(:5 —6c; —132¢c,¢5¢, +26C,C

+120§ —18c§ + 22c3c5)e§ +0 (eg )}

Using equations (29) and (30), we have
(87 -aB) t'(%)+aBT"(¥n)
= f ’(é)[eﬁ —2ce] +(5c§ —4c3)e,‘]1 +2c,d,e2
(604 +12c; —150203)en
+(28c2 —50c2c5 +10¢5 +22¢,¢4 — 805)9,?
+(3c 4c§)dne§ +(1Oc‘;3 —11cyc5 +4c4)dne,‘1"
(120203 6c3 —10c,C4 +305)d e (31)
- (10c6 —29¢c5¢y +64c§3 —149c§c3
+760§c4 —29C,C5 + Glczc§ )er7,
+ (144c2 42602 C3+ 236c2c4 + 28502 c3 99c2 Cs
—190c,c5¢,4 +36C5Cq + 2105
-12¢4 —30033» + 38c3c5)e§ +0 (eﬁ )}
In the same way, we attain
Bt (zn)
= f'(&)edd, [1-2c5e, +(50§ —403)e§
+ 6(302c3 - 205‘ - c4)eﬁ’
+(280§' - 62c§c3 +26C,Cy +160§ —8c5)e,‘1"
+(188c§" Gy — 643 —88c,C3 +34C,Cs
—~106¢,c2 —10cq + 46C5C, )ef; (32)
+codp, — 20§endn + (502 - 40203)e§dn
+ 6(30503 —2¢5 —c,¢4 )e3d,
+ (144c§ —528¢5 ¢, + 264c5c, +471c3C3
—1140505 —300c,C3C4 +42C,Cq + 3305
-12¢; - 60c§ + 60c3c5)ef15 +0 (eg )}
Dividing equation (32) by equation (31), we get
B (2n)
(82 ~ap)t'(x0)+apt’(yn) (33)

—d [l+302039n cody +o(en)}

Since z, is of order at least m, there exists a constant
A such that

dy =2, &= Al +o( m+1). (34)

Thus,
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21 (z0)
(B2-ap)t'(x))+aBt (vn)
=d, —d, [1+ 3c,65e2 —cyd, +O(e§)] (35)

€1 =2Zn—6—

=-3c,C5d 82 +¢,d2 +O(e,2”4).

Hence, if m<3 then using equations (34) and (35)
reduce to

en,1 = C,AZe2™ +O(e§m+1), (36)

which implies that the method defined by equation (17) is
of order at least 2m. Furthermore, if m >3, then using
equations (34) and (35), we obtain

€1 = —3C,CaAem S 4 O(erﬂ“”). (37

Therefore, the method defined by equation (17) is of
order at least m+3.
This completes the proof.

3. The Concrete Iterative Methods

This section describes some interesting studies based on
different form of z, =g(xy: f (Xy), f'(Xn), F'(¥n)) -
Throughout the rest of this article, y, is defined by
equation (21).

3.1. Some Fourth-Order Methods

Case 3.1. For the function ¢ defined by

#(x £(x), £'(x), f'(y))=x- :,(())(()) (38)

then we obtain the two-step Newton’s method
f (%)

t'(%)

f(2n)
f'(z0)

It is easy to see that equation (39) is the well-known

two-point fourth-order double-Newton method [12,13].
Case 3.2. If we take a second order method from [14]

n—man

(39)

Xn+1=2Zn —

fon) (410)
/(X)) +a'f (%)
where «' is a parameter, then we obtain the new
four-order method
f (%)

/(%) +a'f (%)
p1(z) |
(B2 -ap)t' (%) +aBt (vn)

These two methods have order four and use four
functional evaluations per step, and their efficiency index

Iy =Xy —

Iy =Xy —

(41)

Xn+1 =2Zn —

[15] is the same with the known methods of order two.
However, numerical examples show that these modified
methods may be efficient enough and have better performance
as compared to the known methods of order two.

3.2. Some Sixth-Order Methods

Case 3.3. If we take a third-order variant of Newton’s
method appeared in [9]

Z, = X & (42)

" (yn)+ F (%)

Then, we get the new sixth-order method

7 —y 2f (%)
n n f,(yn)+f’(xn)' ( )
2 43
Xn4l =2Zn— b f(zn)

(87 -aB) 1'(x0)+ BT (vn)

Case 3.4. If we use the cubically convergent iterative
scheme in [16]

FOm)(F'(%n)+ f'(yn))
: (44)
21 (%) f'(yn)

Then, the following expressions can be resulted

f (Xn)(f’(xn)Jr f,(yn))
2" (%) £'(yn)

B (z0)

(B2 -ap)t'(x0)+ Bt (vn)

The new methods (43) and (45) have the efficiency
1

index equal to 64 ~1.5651 , which is better than

Xn+1 = %n —

Zn =Xp

(45)

Xn+1 =2Zn —

1
2 ~1.4142 of Newton’s method and 33 ~1.4422 of the
methods (42) and (44).

3.3. The Seventh-Order Method

Case 3.5. If we take the fourth-order Jarratt method [17]
defined by

_ 2 (%)
Yn = Xn 3 f'(xn)’
, , (46)
sy 3f'(yn)+ /(%) f(xn).
B (yy) -2 (%) T(%)
Then, we obtain the new seventh-order method
_ 2 f(x)
Yn = Xn 3 f'(xn),
Zy = X — 3f (Yn)+f (Xn) f(xn) (47)

6 (yn)—2F" (%) F'(%y)’
Xns1 = Zp — A1 (1) .
T (B2 -ap) (%) Bt ()
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Case 3.6. If we take the fourth-order method presented
by Khattri and Abbasbandy in [18]

f (%)

)’
amsnfoo 2 £ 5]
() LIl

Then, we obtain the new seventh-order method

f (%)

)
SR R0 LR
Gl e
(

Xn4l = Zn _(

n—7"=n

2
3

n—"=n

2
3

(49)

2 =ap)f' () +aB T (yy)

The methods defined by equations (47) and (49) require
two function and two first derivative evaluations per
iteration. Each method improves the order of convergence
of the fourth-order method from four to seven with
additional function evaluation at the point iterated by the
fourth-order method. We have that the methods obtained
by the formulae (47) and (49) have the efficiency index

1
equal to 74 ~1.6266 , which is better than the fourth-
1
order methods 43 ~1.5874 . It should be pointed out that
many new higher-order methods can be obtained by
considering the different choices of z,, in (17).

4. Numerical Examples

In this section, the results of some numerical tests are
given to demonstrate the convergence efficiencies of

various iterative schemes. We employ the present methods
(39), (41)(a'=1), (43), (45), (47) and (49) denoted by
INW, IKT, IWM, IOM, IJA and IKA, respectively to
solve some nonlinear equations and compare with
Newton’s method (NW), the method (KT) developed by
Kanwar et al. [14], the method (WM) developed by
Weerakoon et al. [9], the method (OM) by Ozban [16], the
Jarratt method (JA) and the method (KA) developed by

Khattri et al. [18]. The equations f(x)=0 was solved

using the following test functions with corresponding
starting values xg :

f1(x)=sin? x—x? +1,& =1.4044916482153412260,
fo(x)=x? —e* —3x+2,& = 0.25753028543986076046,
f3(x) =cosx—xe* +x?,& = 0.63915409633200758106,

fa (x) =COSX—X, §Z =0.73908513321516064166.

Numerical computations have been carried out using
variable precision arithmetic, with 1000 digits, in Matlab
2013a. The stopping criterion is taken as

|Xn+1 —Xp | +| f (Xn+1)| <1071%

. . . . *
solution was not available, we used the approximation & ,

which was also calculated with 1000 digits. For simplicity,
only 20 digits are displayed.

The computational order of convergence (COC) was
given by (see [19])

. In cases where the exact

coc < M =%/ = Hcal)
In (3 =Xl Pxca = %)
Table 1 summarizes the results obtained by using the
mentioned methods in order to estimate a root of nonlinear

equations. For every function we specify the initial
estimate xg, the number of iterations N required to meet

(50)

the stopping criteria, the value of |f (xn,;)| in the last

iteration and the value of COC.

We also compare our methods with the fourth-order
King’s method [20] (KM), the Ostrowski’s method [21]
(OST), the sixth order methods given by Chun and Ham
[7] (CM1 and CM2), Parhi and Gupta [8] (PM), and the
eighth order method given by Grau-Sanchez [22] (MG)
(see Table 2).

Table 1. Numerical comparisons of the existing methods and the present combined iterative methods

Method | N | |f(%y1) | CPU coc
fi. X =1
NW 9 3.4e-101 0046 | 1.999851588919838
INwW | 5 3.4e-101 0031 | 3.991493528005224
KT 11 3.7e-168 0047 | 2.000000000152457
IKT 6 16e-234 0203 | 3.941604179745691
WM 7 7.56-266 0088 | 3.045328591919475
WM | 5 1.26-566 0111 | 6.262699932136188
oM 5 1.1e-186 0531 | 3.010583446816082
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Method | N | |f(%y1) | CPU coc
IOM 3 6.5e-123 0.063 6.570253392709460
IA 6 1.4-334 0.152 4.248708984793318
A 4 6.0e-426 0.060 6.883153998959128
KA 8 3.0e-244 0.203 3.944947185376285
IKA 6 9.0e-728 0.125 6.896899302326081
fi. % =23
NW 9 1.7e-104 0.031 1.999762551535668
INW 5 1.7e-104 0.031 3.992705876948916
KT 10 6.9¢-110 0.031 2.000000006728449
IKT 6 3.80-296 0.078 3.973931308562368
WM 6 5.8¢-106 0.031 2.977548164561699
IWM 5 1.0e-520 0.046 5.428706327611860
oM 6 1.3e-213 0.031 3.004705987760414
IoM 4 1.7e-129 0.054 5.756054092345167
IA 6 1.4e-311 0.076 3.991853110424756
A 5 6.0e-426 0.078 6.910591531400821
KA 6 1.0e-234 0.094 3.929232615276695
IKA 5 1.9e-1000 0.124 6.991599899128005
fy, X9 =0
NW 8 8.9e-201 0.031 2.001221658759151
INW 5 1.9e-402 0.031 4.036830839017272
KT 8 4.9e-124 0.046 2.000000001565404
IKT 5 1.4-289 0.047 4.072048404246373
WM 5 7.8¢-106 0.033 2.989730807986798
IWM 4 5.4e-271 0.046 5.998509512335663
oM 5 4.3e-112 0172 2.999984519710846
IOM 4 3.5e-276 0.125 5.992519937559335
IA 5 1.0e-286 0.057 3.987739193299696
VA 4 2.80-827 0.061 6.997013442884977
KA 5 1.6e-292 0.109 4.220027174017621
IKA 4 5.3¢-833 0.094 7.095300609185996
fy, xg=1
NW 8 1.7¢-189 0.032 1.997942151132725
INW 5 7.1e-380 0.032 3.725609846208910
KT 9 4.1e-138 0.031 2.000000000185425
IKT 5 2.7e-207 0.063 3.878358818775769
WM 6 1.4e-201 0.062 3.038062042190221
IWM 4 1.2e-201 0.031 5.825290885992024
oM 6 3.4e-206 0.047 3.001050663973445
IOM 4 3.1e-202 0.047 5.843786348256205
IA 5 2.4e-258 0.062 3.722160566330791
VA 4 3.2e-633 0.062 6.833672609585321
KA 5 5.60-264 0.110 3.981598688393819
IKA 4 5.50-643 0.110 7.023459826814717
f3, %=1
NW 9 1.3e-151 0.047 2.001106997169595
INW 5 1.3e-151 0.031 3.999685578348938
KT 9 1.3e-108 0.062 2.000000012840528
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Method | N | |f(%y1) | CPU coc
IKT 5 7.26-122 0.093 3.998627364224366
WM 6 2.9e-131 0.063 3.000546669049605
IWM 4 3.9e-133 0.062 5.866966779516045
oM 6 3.4e-186 0.234 3.000513674703602
IOM 4 2.8e-129 0.062 5.983351099780604
JA 6 3.4e-425 0.109 3.990537088703305
A 4 9.3e-444 0.106 6.985005730502670
KA 6 3.7e-302 0.172 3.991952875605968
IKA 5 0 0.125 6.825746339976237
f3,% =05
NW 8 8.9e-122 0.046 2.003980933345205
INW 5 2.6e-243 0.047 4.016633132132276
KT 9 8e-184 0.047 1.999999964933080
IKT 5 7.0e-205 0.078 4.031322751779069
WM 6 8.7e-214 0.054 3.044070100120532
IWM 4 5.2e-203 0.078 6.026855559538948
oM 6 2.7e-292 0.062 2.999983735018816
IOM 4 1.6e-217 0.062 5.996940163017289
JA 5 5.6e-257 0.085 3.995556784204996
A 4 4.7e-723 0.101 6.971215155322127
KA 6 3.2e-400 0.141 4.116625589705837
IKA 4 4.8e-552 0.140 6.989197183612720
f4, %9 =0
NW 9 1.2e-166 0.016 1.998849110827749
INW 5 1.2e-166 0.031 3.998682264532630
KT 11 3.0e-142 0.047 2.000000000043006
IKT 6 3.1e-220 0.046 3.848261256965063
WM 6 4,6e-189 0.031 3.579101980170624
IWM 4 4.5¢-124 0.031 6.409937874573192
oM 6 3.1e-180 0.031 2.998710147557952
IOM 4 4,0e-183 0.047 6.182149360844007
JA 6 1.2¢-388 0.047 3.967349085468574
JA 4 3.7e-477 0.046 6.909444215467527
KA 7 4,9¢-435 0.094 3.609092926736953
IKA 5 1.0e-851 0.109 7.092117798320114
fg. % =17
NW 8 4,0e-130 0.031 1.994301682099229
INW 5 2.0e-260 0.047 3.594716721885800
KT 10 5.7e-177 0.031 2.000000008480267
IKT 5 6.9¢-190 0.046 3.999745340001081
WM 6 1.2¢-196 0.047 3.150905120339132
IWM 4 7.4e-148 0.032 5.930006529346190
oM 6 1.5e-177 0.031 3.001592484975891
IOM 4 6.2¢-143 0.031 5.886505865949367
JA 6 1.4¢-443 0.062 3.665874280525460
A 4 1.7e-484 0.054 6.799062297633464
KA 6 7.0e-428 0.078 3.868210819761995
IKA 4 1.5e-466 0.093 6.808033648694732
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Table 2. Numerical comparisons of the methods of KM, OST, PM, CM1, CM2, MG and the present methods

Method N | f (Xn+1)| CPU
fi. X =1
INW 5 3.4e-101 0.031
IKT 6 1.6e-234 0.203
KM 10 6.3e-301 0.251
OST 5 1.0e-109 0.062
IWM 5 1.2e-566 0.111
IOM 3 6.5e-123 0.063
CM1 5 1.4e-226 0.098
CM2 6 3.6e-245 0.090
PM 5 1.2e-566 0.068
1JA 4 6.0e-426 0.060
IKA 6 9.0e-728 0.125
MG 5 7.6e-345 0.121
f1. % =23
INW 5 1.7e-104 0.031
IKT 6 3.8e-296 0.078
KM 6 1.0e-259 0.078
OST 6 8.3e-389 0.063
IWM 5 1.0e-520 0.046
IOM 4 1.7e-129 0.054
CM1 5 1.6e-391 0.115
CM2 5 1.4e-372 0.085
PM 5 1.0e-520 0.075
N 5 6.0e-426 0.078
IKA 5 1.9e-1000 0.124
MG 4 1.6e-130 0.320
f2 » X = 0
INW 5 1.9e-402 0.031
IKT 5 1.4e-289 0.047
KM 5 1.9e-376 0.059
OST 5 1.1e-352 0.063
IWM 4 5.4e-271 0.046
IOM 4 3.5e-276 0.125
CM1 4 8.2e-313 0.081
CM2 4 4.2e-291 0.067
PM 4 5.4e-271 0.052
N 4 2.8e-827 0.061
IKA 4 5.3e-833 0.094
MG 4 1.5e-387 0.133
fo, X9 =1
INW 5 7.1e-380 0.032
IKT 5 2.7e-207 0.063
KM 5 3.8e-281 0.080
OST 5 6.6e-258 0.047
IWM 4 1.2e-201 0.031
IOM 4 3.1e-202 0.047
CM1 4 3.4e-194 0.074
CM2 4 1.4e-194 0.062
PM 4 1.2e-201 0.059
1JA 4 3.2e-633 0.062
IKA 4 5.5e-643 0.110
MG 4 3.5e-326 0.129
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Method N | f (Xn+1)| CPU
f3 , Xo = 1
INW 5 1.3e-151 0.031
IKT 5 7.2e-122 0.093
KM 5 1.5e-103 0.196
oSsT 5 9.5e-187 0.094
IWM 4 3.9e-133 0.062
IOM 4 2.8e-129 0.062
CM1 4 9.0e-124 0.102
CM2 4 4.3e-118 0.098
PM 4 4.0e-133 0.131
A 4 9.3e-444 0.106
IKA 5 0 0.125
MG 4 1.1e-205 0.190
f3, %y =0.5
INW 5 2.6e-243 0.047
IKT 5 7.0e-205 0.078
KM 5 1.1e-163 0.124
oSsT 5 1.0e-292 0.062
IWM 4 5.2e-203 0.078
IOM 4 1.6e-217 0.062
CcM1 4 1.2e-200 0.120
CM2 4 7.4e-188 0.096
PM 4 5.3e-203 0.093
UA 4 4.7e-723 0.101
IKA 4 4.8e-552 0.140
MG 4 2.0e-316 0.203
f4 s XO =0
INW 5 1.2e-166 0.031
IKT 6 3.1e-220 0.046
KM 6 1.8e-197 0.057
OST 5 5.5e-141 0.031
IWM 4 4.5e-124 0.031
IOM 4 4.0e-183 0.047
CcM1 5 3.1e-489 0.073
CM2 5 1.6e-373 0.055
PM 4 4.5e-124 0.038
UA 4 3.7e-477 0.046
IKA 5 1.0e-851 0.109
KLW 4
MG 4 8.8e-127 0.086
f4 Xp = 1.7
INW 5 2.0e-260 0.047
IKT 5 6.9e-190 0.046
KM 5 6.8e-178 0.045
OST 5 4.4e-192 0.031
IWM 4 7.4e-148 0.032
IOM 4 6.2e-143 0.031
CM1 4 1.5e-141 0.067
CM2 4 1.0e-139 0.051
PM 4 7.3e-148 0.044
UA 4 1.7e-484 0.054
IKA 4 1.5e-466 0.093
MG 4 7.2e-244 0.089
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In Table 1 it is seen that our combined iterative
methods generally arrive at the iterated solution with less
number of iterations than the corresponding second, cubic
and the fourth methods, so that the proposed methods
improve the computational efficiency of the existing
iterative methods. Our examples show that the combined
iterative methods sometimes require more CPU time per
iteration, compared to the existing methods. Although
our methods require more time per iteration, they yield
better numerical results. The numerical results in Table 1
show that for almost all of the test functions, our methods
are well in accordance with the theory developed in
section 2.

The test results in Table 2 show that for most of the
functions we tested, the methods introduced in the present
presentation for numerical tests have equal or better
performance compared to the other methods of the same
order. In each of these 8 test cases, the INW method
outperformed the KM method in every case and it
outperformed the OST method in 5 out of the 8 cases. Our
IKT method outperformed KM method in 6 out of the 8
cases. We also implemented the three 6th order schemes
of [7,8] using these 8 cases, and found that the IWM and
IOM methods outperformed the PM, CM1 and CM2
methods in 7 out of the 8 cases.

In [22] a eighth-order method, denoted with MG was
considered. The IJA method outperformed the MG
method in 7 out of the 8 cases, and the IKA method
outperformed the MG method in 4 out of the 8 cases.
Besides, we can see that the local convergence property of
the new methods depending on the structure of the tested
functions and the choice of initial approximations.

5. Conclusion

The new modified Newton’s methods presented in this
paper offer an increase rate of convergence over the
existing methods. Unlike other higher-order methods, the
distinct feature of such methods is only to add the
evaluation of the function at another point, while their
order of convergence can be improved effectively. Our
new combined iterative methods are relatively simple and
robust, more high-order convergence methods can be
constructed by using the family of methods (17).

Computational results for test functions, presented in
Table 1 and Table 2, show that our methods are efficient
and show at least equal or better performance as compared
with other higher order (4th order, 6th order and 8th order)
schemes or Newton’s method itself. Our methods show
similar good performance for other functions.
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