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Abstract  The probability of the coincidence of some discrete random variables having a Poisson distribution with 
parameters λ1, λ2, …, λn, and moments are expressed in terms of the hypergeometric function 1Fn or the modified 
Bessel function of the first kind if n=2. Considering the null hypothesis H0: λ1=λ2=….= λn =θ, where θ is some 
positive constant number, asymptotic approximations of the probability and moments are derived for large θ using 
the asymptotic expansion of the hypergeometric function 1Fn and that of the modified Bessel function of the first 
kind if n=2. Further, we show that if the sample mean is a minimum variance unbiased estimator (MVUE) for the 
parameter λi, then the probability that H0 is true can be approximated by that of a coincidence. In that case, a chi-
square χ2 goodness of fit test can be established and a 100(1-α)% confidence interval (CI) for θ can be constructed 
using the variance of the coincidence (or via coincidence) and the Central Limit Theorem (CLT). 
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1. Introduction 

A discrete random variable X having a Poisson 
distribution with parameter λ  is denoted as ~ ( )X Poi λ , 
and its probability mass function (p.m.f) [9] is 

 ( ) , 0,1, 2, .
!

seP X s s
s

λλ−
= = = ⋅⋅⋅ ⋅  (1.1) 

Poisson distribution is often used for modeling real-life 
discrete random phenomena and has many applications in 
economics, business, health care, science, and engineering 
[3,5,7,13]. For instance, the number of hungry persons 
entering MacDonald's restaurant, the number of birth, 
death, marriages, the number of patients arriving at an 
emergency room, the number of customers who call in call 
centers by the end of the month to complain about a 
service problem, and many more follow a Poisson 
distribution model [3,5,7,13]. The mathematical and 
statistical analysis throughout this paper may apply to 
most of the above examples, however, we mainly focus on 
scenarios of telephone calls in call centers in order the 
analysis to be comprehended without much difficulties. 

Now, let us consider that 1 2, , , nX X X⋅ ⋅ ⋅  are Poisson 
distributed random variables, independent and identically 
distributed ( )iid , and ~ ( ), 1, 2, , .i iX Poi i nλ = ⋅⋅⋅  Then the 
joint p.m.f of 1 1 2 2, , , n nX s X s X s= = ⋅⋅⋅ =  is obviously 
given by 
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 (1.2) 

In the context of applications, we may think about n  
call centers each receiving an average of iλ  telephone 
calls in an hour. Let the random variable , 1, 2, ,ikX i n= ⋅⋅⋅  
and 1,2, , ik K= ⋅⋅⋅ represents the number of calls received 
by the center i  at the time k . A coincidence will occur  
if all the centers receive exactly the same amount of  
calls 
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at the time iK K=  (or in iK  hours) for all .i  Thus the 
coincidence the event is defined by  
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 (1.4)  

And its probability of occurrence is 
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More coincidences can be defined. For instance, let m n< , 
, 1,2, , {1,2, , }i i mr n= ⋅⋅⋅ ∈ ⋅⋅ ⋅  such that i jr r≠  for all ,i j ; and 

let , , ,1 2r r rmQ ⋅⋅⋅  
denotes the set 1 2{1,2, , } \{ , , , }mn r r r⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . 

In addition, let  

 , , ,1 2 1 2{ },r r r a a am n mB X X X s⋅⋅⋅ −= = = ⋅⋅⋅ = =  

where 1 2 , , ,1 2{ , , , }n m r r rma a a Q− ⋅⋅⋅⋅ ⋅ ⋅ = , and consider the 
event  
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where 1,2, ,l m∈ ⋅⋅⋅  and the inner union is over all 
possible 1 2( , , , )mr r r⋅ ⋅ ⋅  combinations such that 

{ }, 1,2, 1, 2, ,i i mr n= ⋅⋅⋅ ∈ ⋅⋅ ⋅  and i jr r≠  for all ,i j . 
Considering once again the call-center scenario, a near 
coincidence will occur if one center receives exactly one 
more call than other centers at the time k , while the others 
receive exactly the same number of calls at that time. 
Setting 1m =  so that , , ,1 2r r rmB ⋅⋅⋅  

becomes  

 { }1 1 2 1 ,r a a anB X X X s−= = = ⋅⋅⋅ = =  

where { }1 2 1 1, , , n ra a a Q−⋅⋅ ⋅ = . Then a near coincidence is 

the event corresponding to the event ,m lC  with 1m =  and 
1l =  and is defined by 
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Further coincidences can be defined using (1.6). 
Consider that 3 centers receive exactly 2 more calls than 
other centers in a given hour, while the others receive 
exactly the same number of calls. In this case, 3m =  so 
that , , ,1 2r r rmB ⋅⋅⋅  

becomes  

 { }, ,1 2 3 1 2 3 ,r r r a a anB X X X s−= = = ⋅⋅⋅ = =  

1 2 3 , ,1 2 3, , , n r r ra a a Q−⋅⋅ ⋅ = . Then, the coincidence is the 

event corresponding to the event ,l mC  with 3m =  and 
2l =  and is 
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We may define as many coincidences using (1.6). Is it 
important? Yes, it is certainly. For instance, understanding 
(or interpreting) and using such events (coincidences) for 
inferential and statistical, and other purposes has attracted 
researchers in many fields such as brain and cognitive 
sciences, psychology, law, discrete mathematics, physics 
and many more, obviously probability and statistics 
[7,8,10,12]. In this paper, we show (later in section 6) that 
a coincidence such the event C  given by (1.4) may lead 
to interesting statistical inference results, as it can be 
interpreted as the null hypothesis of a statistical 
hypothesis test. 

Next, let us consider the null hypothesis 

 0 1 2: ,nH λ λ λ θ= = ⋅⋅⋅ = =  (1.9) 

against the alternative hypothesis  

 : , 1, 2, , .a iH One of i n is not equalλ θ= ⋅⋅⋅  (1.10) 

We observe that i i iKλ = Λ  is a linear function of the 
time iK . This makes the test hypothesis a linear function 
of time. Moreover, if iK K=  hours for all i , see (1.3), 
then ~ ( )ik iX Poi Λ , where /i i KλΛ = . Alternatively, 
we may consider another statistics test on slopes iΛ which 
is steady in time. In that case, we should consider the null 
hypothesis 

 00 1 2: / ,nH KθΛ = Λ = ⋅⋅⋅ = Λ =  (1.11) 

against the alternative hypothesis  

 : , 1, 2, , / .aa iH One of i n is not equal KθΛ = ⋅⋅⋅ (1.12) 

Returning to the call-center scenario, if 0H  is true 
almost surely (with probability 1), then the centers 
become undistinguishable. This means that knowing the 
average number of calls in one center in a hour, for 
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information for all centers. In this case, 1X  is a sufficient 
statistics for θ  [4], and if for instanceθ  is large ( 15)θ ≥ , 
then a 100(1 )%α−  confidence interval (CI) for θ  can 
readily be obtained using the Central Limit Theorem (CLT) 
[4]. However taking into account the alternative 
hypothesis aH , one has to be careful when constructing a 

100(1 )%α−  CI for θ  since 1X  may be a biased 
estimator for θ . 

Before we proceed to the main objectives of the paper, 
we shall first give the definition of the generalized 
hypergeometric function as it is an important 
mathematical tool that we are going to use in this paper. 
Definition 1. The generalized hypergeometric  
function is a special function denoted as 

1 2 1 2( , , , ; , , , ; )p q p qF a a a b b b x⋅ ⋅ ⋅ ⋅ ⋅ ⋅  [1,11], where 

1 2, , , na a a⋅ ⋅ ⋅  and 1 2, , , nb b b⋅ ⋅ ⋅  are arbitrary constants. It 
is given by the power series 
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where ( ) ( )
( )

s
sββ

β
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Γ

for any complex β and integer s , 

with 0( ) 1β = , and ( )βΓ is the gamma function. 
This paper has indeed two main goals. As a first goal, 

the probability and moments of C , see (1.4), is expressed 
in terms of the hypergeometric function 1 nF . Since the 
properties of this function is well known [1,11], its 
asymptotic expansion is used to derive the asymptotic 
approximations for the probability and moments of the 
event C  for large θ  ( 15)θ ≥ , under the null hypothesis 

0H , see (1.9). And the probability ,( )l mP C , where ,l mC  
is given by (1.6), is also expressed in term of 1 nF , and its 
asymptotic expression under the null hypothesis is also 
derived. 

The second goal is to establish a chi-square 2( )χ
goodness of fit test to examine 0H , see (1.9), via the 
variance of the coincidence, and to propose a new method 
to construct a 100(1 )%α−  CI for the parameter θ  
( 15)θ ≥  using the variance of the coincidence. 

The paper is organized as following. In section 2, 
formulas for the probabilities of the events C  and ,l mC , 

( )P C  and ,( )l mP C , are obtained in terms of the 
hypergeometric function 1 nF  and under the null 
hypothesis 0H  given in (1.9). The moments of C  and its 
variance are expressed in terms of 1 nF  in section 3. Since 
the asymptotic expansion of 1 nF  is well known [11] as 
already mentioned above, it is used to obtain the 
asymptotic expressions of the probabilities ( )P C  and

,( )l mP C  in section 4 and that of the variance of C  in 
section 5. The asymptotic expansions in sections 4 and 5 
are valid for 3n ≥ . In the case with 2n = , the moments 
are expressed in terms of the modified Bessel functions of 
the first kind in Appendix A. In section 6, a chi-square test 
to examine the null hypothesis test in (1.9) is established 
and a confidence interval for θ  is constructed using the 
variance of the coincidence obtained in section 5. Important 
discussion and conclusions are given in section 7. 

2. The Probabilities ( )P C  and ,( )l mP C  in 
Terms of the Hypergeometric Function 
1 nF  

In this section, the probability of the event C  and that 
of the event ,l mC , ( )P C  and ,( )l mP C respectively, are 
written in terms of the hypergeometric function 1 nF . The 
results are summarized in form of Theorems 1 and 2. 
Theorem 1. The probability of the coincidence C , in (1.4), 
is given by 
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Then, under the null hypothesis 0H , see (1.9),  
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Proof. From (1.5), we have 
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Hence, under 0 ,H  
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It is known that, for 2n = , ( )P C can be written in 
terms of the Modified Bessel of the first kind [7,14]. 
Theorem 1 generalizes the results in [7] for any integer 

2n ≥ . We also would like to point out that the series that 
Griffths [7] calls remodified Bessel functions are in fact 
hypergeometric functions 1 nF  [1,11]. 
Theorem 2. The probability of any event defined using 
(1.6) is given by 
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Then, under the null hypothesis 0H , 
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Proof.  
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where  
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Hence, under 0H , 
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3. Moments and the Variance Associated 
with the Event C  in Terms of the 
Hypergeometric Function 1 nF  

Here, the moments and the variance associated with the 
coincidence C are written in terms of the hypergeometric 
function 1 nF . We mainly focus on the coincidence C  
rather than ,l mC , the reason of doing so will become clear 
later in section 6. Results are summarized in Lemma 1 and 
Theorem 2. 
Lemma 1. The thγ moment γµ of the coincidence C is 
given by  
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Theorem 3. Under 0H , the first order moment (mean) 
associated with the coincidence C  is  

 ( )1 1 1;1,2, , 2; ,n n n
ne Fθµ θ θ−= ⋅⋅⋅  (3.25) 

while the second order moment is  

 ( )2 1 1;1,1,2, , 2; .n n n
ne Fθµ θ θ−= ⋅⋅⋅  (3.26) 

 

 



 American Journal of Applied Mathematics and Statistics 189 

Thus the variance associated with the coincidence is  
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(3.27)  

Proof. Setting 1γ = in (3.24) in Lemma 1, and using the 
fact that under 0H , , 1, 2, ,i i nλ θ= = ⋅⋅⋅ , gives  
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while setting 2γ = and taking into account the null 
hypothesis gives  
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Hence, using the fact that the variance ( )22
2 1σ µ µ= −

gives (3.27). 

4. Asymptotic Evaluation of ( )P C  and 
,( )l mP C  under 0H , and for Large θ  

In this section, we consider the case with 2n > , and 
derive the asymptotic approximations of the probabilities 
of C  and ,l mC  when θ  is large. The case with 2n =  is 
considered later in Appendix A. The main reason is that 
the formulas used here do not work for 2n = . The results 
are summarized in Theorems 4 and 5. 

Theorem 4. Under 0H , see (1.9), if 2n > , then for 
large θ ( 15)θ ≥ , 

 1/2 /2 1/2( ) ~ 2(2 ) .nP C nπθ − −  (4.30) 
Proof. To prove (4.30), we use formulas (16.11.1), 
(16.11.3), (16.11.4) and (16.11.9) in [11]. Setting 1p =  
and q n=  in (16.11.3) yields nκ = and

1 ( 1) / 2 1/ 2 / 2n n nν = − + − = − . Substituting 1p =  and
q n= , nκ =  and 1/ 2 / 2nν = −  in (16.11.1) gives  
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 (4.31) 

where jc is given by formula (16.11.4) in [11]. We now 

let nz θ= − , use formula (16.11.9) in [11] and obtain  
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 (4.32) 

Hence, dropping the terms corresponding to 1j ≥  while 
keeping the leading term corresponding to 0j =  yields 

 ( ) 1/2 /2 1/2
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( )

1;1,1, ,1; ~ 2(2 ) .n n n
n

P C

e F nθ θ πθ− − −= ⋅⋅⋅
(4.33) 

Theorem 5. Under 0H , see (1.9), if 2n > , then for large 
θ ( 15)θ ≥ , 

 1/2 /2 1/2
,( ) ~ 2 (2 ) .
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m
P C nπθ − − 

 
 

 (4.34) 

Although, the proof of Theorem 5 is similar to that of 
Theorem 4, we prefer to show it here. For instance, one 
should doubt about (4.34) since the subscript l  in (2.19) 
does not appear in its asymptotic approximation (4.34). 
Proof. To prove (4.35), we use formulas (16.11.1), 
(16.11.3), (16.11.4) and (16.11.9) in [11] as before. 
Setting 1p =  and q n=  in (16.11.3) yields nκ = , and 

 1 [( 1) 1( )] ( 1) / 2
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l m n m n
lm n
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= − −

 

Substituting 1p =  and q n= , nκ =  and 
1/ 2 / 2lm nν = − −  in (16.11.1) gives 
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 (4.35) 

where jc
 
is given by formula (16.11.4) in [11]. 

We now let nz θ= − , use formula (16.11.9) in [11] 
and obtain  
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(4.36) 
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Hence, dropping the terms corresponding to 1j ≥  while 
keeping the leading term corresponding to 0j =  yields 
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  (4.37) 

5. Asymptotic Evaluation of Moments of 
the Coincidence for Large θ , and 
under 0H  

For the same reason as in section 4, we also consider 
that 2n > , and as before, we use formulas (16.11.1), 
(16.11.3), (16.11.4) and (16.11.9) in [11] to obtain 
asymptotic expressions for the thγ moment γµ  and the 

variance of the coincidence C , 2σ , which are valid when
θ is large. Results are given in Theorem 6. 
Theorem 6. Under 0H , see (1.9), if 2n > , then for large 
θ ( 15)θ ≥ ,  

 1/2 /2 1/2 1/2 /2~ 2(2 ) .n nn γ
γµ π θ− − + −  (5.38) 

And the variance is asymptotically given by 

 2 1/2 /2 1/2 5/2 /2 1 1 3~ 2(2 ) 4 (2 ) .n n n nn nσ π θ π θ− − − − − −− (5.39) 

Proof. To derive an asymptotic expression for γµ  valid 

for large θ  ( 15)θ ≥ , we set 1p =  and q n=  in (16.11.3) 
in [11] and obtain nκ = , and 

 ( )1 [ 2( )] 1 / 2 1/ 2 3 / 2.n n nν γ γ γ= − + − + − = − −  

Substituting 1p =  and q n= , nκ =  and 
1/ 2 (3 ) / 2nν γ= − −  in (16.11.1) gives 
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 (5.40) 

where jc is given by formula (16.11.4) in [11]. 

Setting nz θ= − in (5.40), taking into account the null 
hypothesis 0H , and using formula (16.11.9) in [11] as 
before yields 
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 (5.41) 

Hence, dropping the terms corresponding to 1j ≥  while 
keeping the leading term corresponding to 0j =  yields 
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And hence, 
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6. A Chi-square Goodness of Fit Test and 
Confidence Interval for θ  via 
Coincidence 

In this section, we use the fact that, under certain 
conditions that we are going to mention shortly, the 
coincidence C can be interpreted as the null hypothesis, 
see (1.9) or (1.11) and thus establish a chi-square 
goodness of fit test to examine the null hypothesis 0H via 
the variance of the coincidence C , and consequently 
construct a 100(1 )%α−  CI for the parameter θ if there is 
no significance evidence to reject 0H . We also consider 
that θ  is large ( 15)θ ≥ so that we apply the Central Limit 
Theorem (CLT). This justifies the derivation of the 
asymptotic approximation of the variance of the 
coincidence C  for large θ  in section 3. 

For n  centers and each receiving a total of 

1
, 1, 2,3, ,
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i ik

k
X X i n

=
= = ⋅⋅⋅∑ calls at the time iK , we define 

the overall standard deviation as 
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 (6.44) 

where the generalized mean GM is given by  
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If 15iΛ ≥ , then ikX  approximately follows a normal 
distribution with mean iΛ  and variance iΛ  by the CLT 
[4]. Thus, 

 ( )~ , .ik i iX N Λ Λ  (6.46) 

After a certain amount of time, iK  hours, and under the 
null hypothesis 0H , 

 ( )~ , .ik i i i iX N K KΛ Λ  (6.47) 

Theorem 7. If 1

1

Ki
i ikKi k

X X
=

= ∑
 
is a minimum variance 

unbiased estimator (MVUE) [4] for iλ  and iK K=  for 
all i , and 0H  can not be rejected, then the probability 
that 0H  is true is approximately given by  

 ( ) ( )0 : ,P H true P C≈   (6.48) 

where ( )P C  is given by (2.15) or (4.33) when the 
parameter 1.θ >>  

Proof. The proof is straightforward. If 1
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i ikKi k

X X
=

= ∑  is 

a minimum variance unbiased estimator (MVUE) [4] for 
iλ  and iK K=  for al l i , and the null hypothesis can not 

be rejected, then 
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 (6.49) 

Moreover, if there is no evidence to reject 0H , we shall 
expect a coincidence to occur after K  hours, and hence, 
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where 2σ  is the variance of C  and is approximated by 
(5.39) if θ  is large. In that case, 
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Using (5.39) gives  
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Thus a Chi-square ( )2χ  goodness of fit test can now 

be carried out as following. The null hypothesis 0H  will 
be rejected if  
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or (and) 
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where α  is the significance level needed to be achieved 
by the decision maker. 

If that is not the case, there is no significant evidence to 
reject 0H , a 100(1 )%α− confidence interval for the 

variance of C , 2σ can eventually be obtained, 
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and leads to a confidence interval for θ , 

 1 2 ,θ θ θ< <  (6.57) 

where 1θ  and 2θ  respectively satisfy 
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and  
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 (6.59) 

For 3n =  and 5n = , (6.58) and (6.59) can readily be 
solve, while for 2, 4n =  and 5n > , (6.58) and (6.59) can 
readily be solved using basic numerical methods. 

For 3n = ,  
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7. Discussion and Conclusion 
Having expressed the probability of the coincidence C  

given by (1.4) and that of ,l mC  given by (1.6) and the 
moments of C  in terms of the special function 1 nF  for 

2n >  (Theorem 1, Theorem 2 and Theorem 3) on one 
hand, and in terms of the modified Bessel function of the 
first kind of order φ , Iφ (Corollary 1) if 2n =  on another, 
we also derived their corresponding approximations 
(Theorem 4, Theorem 5 and Theorem 6). 

Griffths [7] defined some coincidences, for example the 
near coincidence (see (1.7)), and expressed their probabilities 
in terms of some power series that he named re-modified 
Bessel functions. Here we have shown in Theorem 1 that 
these series are indeed hypergeometric functions 1 nF  for 
any event that can be defined using (1.6). 

We also found that if iX  is a minimum variance 
unbiased estimator (MVUE), for iλ  [4] and iK K=  for 
all i  and there is no evidence to reject the null hypothesis

0 1 2: nH λ λ λ θ= = ⋅⋅⋅ = = , where θ  is some positive 
number, then the probability that 0H  is true can be 
approximated by that of the coincidence C , (Theorem 7). 
One may understand this fact this way. If it happens that 

0H  is true almost surely then ( ) 1P C = . This scenario is 
no longer a coincidence because the centers become 
undistinguishable. But since ( ) 1P C <  always, then we 
shall be able to distinguish one center to another. 

Moreover, if the probability that 0H  is true almost 
equals the probability of the coincidence C , and the null 
hypothesis 0H  can not be rejected, then the variance of 

, 1, 2, ,iX i n= ⋅⋅⋅  is that of the coincidence 0H . In that 

case, with a 2χ  test as established in section 6, if there is 
no evidence to reject 0H , one can readily construct a 
100(1 )%α−  confidence interval (CI) for the parameter θ  
(section 6 and appendix A) using the variance of the 
coincidence C  (or via coincidence). 

The results obtained in this paper can be used, for 
example, to achieve better results in telephone traffic 
measurements [2]. 

A. A Chi-square Goodness of Fit Test and
100(1 )%α− CI for θ  via Coincidence 
for 2n =  
In sections 4 and 5, we considered that the number of 

call centers n  is greater or equals 3 ( )3n ≥ . As mentioned 

before, the main reason is that the asymptotic expansion of 
the hypergeometric functions 1 nF  for 1θ >>  in sections 4 
and 5 is valid when 3n ≥ . Here, we consider that 2n = , 
write the first and second moments 1µ  and 2µ  in terms of 
the modified Bessel function of the first kind, and use the 
asymptotic expansion of the modified Bessel function [1] 
to derive the asymptotic approximations for 1µ  and 2µ  

valid for 1θ >> . A 2χ  goodness of fit test is established 
and hence a 100(1 )%α−  CI for the parameter θ  is 
obtained if the null hypothesis 0H  is not rejected. 
Definition 2. The modified Bessel function of the first kind 
of order φ , Iφ , is the series (formula 9.6.10 in [1]) 
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where φ  is some number. 
Corollary 1. For 2n = , the first and second order 
moments of the coincidence C , see Theorem 3, are  

 ( ) ( )2 2 2 2
1 0 1 1;2; 2e F e Iθ θµ θ θ θ θ− −= =   (A.65) 

and  
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respectively. 
Thus the variance of the coincidence is 
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Proof. Setting 2n =  in Theorem 3 yields 
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Rearranging terms, setting 2x θ=  and 1φ =  in (A.64) 
gives 
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On the other hand, 
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Rearranging terms, setting 2x θ=  and 0φ =  in (A.64) 
gives 
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Hence, the variance of the coincidence is 

( ) ( ) ( )22 2 2 2 4 2
2 1 0 12 [ 2 ] .e I e Iθ θσ µ µ θ θ θ θ− −= − = − (A.72) 

Theorem 8. If 1θ >> , then for 2n = , the variance of the 
coincidence C , 2σ , is asymptotically given by 

 
3/2

2
1/2 .

42( )
θ θσ

ππ
= −  (A.73) 

Proof. The asymptotic approximation of ( )2 , 1Iφ θ θ >>  
(formula 9.6.10 in [1]), is 
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for any φ . Then, 

 ( )
( )

1/22
2 2

1 1 1/22 ~
44

ee I e
θ

θ θ θµ θ θ θ
ππθ

− −  = =  
 

(A.75) 

and  
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Hence, 
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Following section 6, a chi-square goodness of fit test 
can be conducted as following. 

The null hypothesis 0H  will be rejected if 
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or (and) 
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where, as before, α  is the significance level needed to be 
achieved by the decision maker. 

If there is no evidence to reject the null hypothesis 0H , 
a 100(1 )%α− CI for θ  is thus given by 

 1 2 ,θ θ θ< <  (A.80) 

where 1θ  and 2θ  respectively satisfy 
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and 
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