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Abstract The probability of the coincidence of some discrete random variables having a Poisson distribution with
parameters Ay, 4y, ..., 4, and moments are expressed in terms of the hypergeometric function ;F, or the modified
Bessel function of the first kind if n=2. Considering the null hypothesis Hy: 1;=1,=....= 4, =0, where 0 is some
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parameter 4;, then the probability that Hy is true can be approximated by that of a coincidence. In that case, a chi-
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using the variance of the coincidence (or via coincidence) and the Central Limit Theorem (CLT).
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1. Introduction

A discrete random variable X having a Poisson
distribution with parameter A4 is denoted as X ~ Poi(1),

and its probability mass function (p.m.f) [9] is

(1.1)

Poisson distribution is often used for modeling real-life
discrete random phenomena and has many applications in
economics, business, health care, science, and engineering
[3,5,7,13]. For instance, the number of hungry persons
entering MacDonald's restaurant, the number of birth,
death, marriages, the number of patients arriving at an
emergency room, the number of customers who call in call
centers by the end of the month to complain about a
service problem, and many more follow a Poisson
distribution model [3,5,7,13]. The mathematical and
statistical analysis throughout this paper may apply to
most of the above examples, however, we mainly focus on
scenarios of telephone calls in call centers in order the
analysis to be comprehended without much difficulties.

Now, let us consider that Xq, X,,---, X,, are Poisson
distributed random variables, independent and identically
distributed (iid), and X; ~ Poi(4),i=1,2,---,n. Then the

joint p.m.f of X;=5,X5=5,,--+, X, =5, is obviously
given by

P(Xy =51, Xy =83, X =$p)
= P(Xl = S1)P(X2 :SZ)"' P(Xn = Sn)

e e2,%2 g% gtn lﬂ[e’ﬂilsi
5! s ! sy ! st (1.2)
n
-24 n 25
e il 2. i
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In the context of applications, we may think aboutn
call centers each receiving an average of 4 telephone

calls in an hour. Let the random variable X;,,i=12,---,n
and k =1,2,---,K; represents the number of calls received

by the center i at the timek . A coincidence will occur
if all the centers receive exactly the same amount of
calls

n
Xi = Xik, (1.3)
i=1

at the time K; =K (or in K; hours) for all i. Thus the
coincidence the event is defined by

czo{xlzxzz---:xnzs}. (1.4)

s=0

And its probability of occurrence is
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P(C)=P{D{x1=xz=~~=xn=s}]
s=0
s (1.5)
_iﬁ 00 (Hﬂﬂ]
—e i=l z
s=0

More coincidences can be defined. For instance, let m<n,

= ,62>0.
s')

fii=12...m €{L2,---n} such that r, =r; for all i,j; and
let er .- denotes the set {1,2,---,n}\{r,ro, -1y} .
In addltlon, Iet

Brl,rz,n-,rm :{Xal = Xa2 == Xan_m =s},

where {ag, 8,8y m}=Qp ry,..r, » and consider the

event

Cm,I

:D U {Brl

s=0m,,Im

m{xrl ==Xy =s+|}}, (1.6)

is over all
such  that

where 1€1,2,---m and the inner union
possible  (f,r,-+ 1) combinations
ri‘i:]_‘z’mm S {1, 2, n} and
Considering once again the call-center scenario, a near
coincidence will occur if one center receives exactly one
more call than other centers at the time k , while the others
receive exactly the same number of calls at that time.
Setting m=1 so that B becomes

= Xanfl = S}’

an_1} =Qp, - Then a near coincidence is

r=rp for al ij

7,12, m

B, ={xa1 =X, =

where {ay,a;,+,
the event corresponding to the event C, | with m=1 and
I =1 and is defined by

Cnevies = U U {8y n{%,

s=0n=1

1.7

_s+1}}

Further coincidences can be defined using (1.6).
Consider that 3 centers receive exactly 2 more calls than
other centers in a given hour, while the others receive
exactly the same number of calls. In this case, m=3 so

that By r, ... becomes
Brrp.r3 :{xal =Xay == Xay 3 :S}’
8,8, 8 3=Qy ,r; - Then, the coincidence is the

event corresponding to the event C;, with m=3 and
=2 andis

Crn=3=2
(1.8
—U U { g { 1:xf2:Xr3:S+2}}'

s=0r,rn,r3

We may define as many coincidences using (1.6). Is it
important? Yes, it is certainly. For instance, understanding
(or interpreting) and using such events (coincidences) for
inferential and statistical, and other purposes has attracted
researchers in many fields such as brain and cognitive
sciences, psychology, law, discrete mathematics, physics
and many more, obviously probability and statistics
[7,8,10,12]. In this paper, we show (later in section 6) that
a coincidence such the event C given by (1.4) may lead
to interesting statistical inference results, as it can be
interpreted as the null hypothesis of a statistical
hypothesis test.

Next, let us consider the null hypothesis

HO :ﬂizﬂz ="'=ﬂn 29,
against the alternative hypothesis
H,:Oneof 4,i=12,-,

(1.9

nis not equal 6. (1.10)

We observe that 4 = A;K; is a linear function of the
time K;. This makes the test hypothesis a linear function
of time. Moreover, if K; =K hours for alli, see (1.3),
then X ~ Poi(Aj) , where A; =4 /K . Alternatively,
we may consider another statistics test on slopes A; which
is steady in time. In that case, we should consider the null
hypothesis

Hog:A1=Ay=-=A, =0/K, (1.11)

against the alternative hypothesis
H,a :Oneof A;,i=12,---nisnotequal #/K.(1.12)

Returning to the call-center scenario, if Hq is true
almost surely (with probability 1), then the centers
become undistinguishable. This means that knowing the
average number of calls in one center in a hour, for

_ (K
example Xlz[z Xlk]/K , implies we have enough
k=1

information for all centers. In this case, X_l is a sufficient
statistics for @ [4], and if for instance & is large (6 >15),
then a 100(1—«)% confidence interval (Cl) for € can

readily be obtained using the Central Limit Theorem (CLT)
[4]. However taking into account the alternative
hypothesis H,, one has to be careful when constructing a

1001-a)% CI for @ since X_l may be a biased

estimator for 6.

Before we proceed to the main objectives of the paper,
we shall first give the definition of the generalized
hypergeometric  function as it is an important
mathematical tool that we are going to use in this paper.

Definition 1. The generalized hypergeometric
function is a special function denoted as
Fq(ag,ap,-++ap;by,by, by X) [1,11], where
&,ay,---,a, and by,b,,---,b, are arbitrary constants. It
is given by the power series
Fq(al,"', ’ ,_ q’) Z l)s (p)sX (1 13)

5 () (bg)s st
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r(g+s)
r(p)
with (8)g =1, and I'(B) is the gamma function.

This paper has indeed two main goals. As a first goal,
the probability and moments of C, see (1.4), is expressed
in terms of the hypergeometric function {F,. Since the
properties of this function is well known [1,11], its
asymptotic expansion is used to derive the asymptotic
approximations for the probability and moments of the
event C for large € (€ >15), under the null hypothesis

Hp, see (1.9). And the probability P(C, ;,), where C;
is given by (1.6), is also expressed in term of ;F,, and its

asymptotic expression under the null hypothesis is also
derived.

where (f), = for any complex S and integer s

The second goal is to establish a chi-square (;{2)
goodness of fit test to examine Hy, see (1.9), via the
variance of the coincidence, and to propose a new method
to construct a 100(1-«a)% CIl for the parameter &
(6 >15) using the variance of the coincidence.

The paper is organized as following. In section 2,
formulas for the probabilities of the events C and C; ,,
P(C) and P(Ci) . in terms of the
hypergeometric function {F, and under the null
hypothesis Hg given in (1.9). The moments of C and its
variance are expressed in terms of |F, in section 3. Since
the asymptotic expansion of |F, is well known [11] as
already mentioned above, it is used to obtain the
asymptotic expressions of the probabilities P(C) and
P(Ci n) in section 4 and that of the variance of C in

section 5. The asymptotic expansions in sections 4 and 5
are valid for n>3. In the case with n=2, the moments
are expressed in terms of the modified Bessel functions of
the first kind in Appendix A. In section 6, a chi-square test
to examine the null hypothesis test in (1.9) is established
and a confidence interval for @ is constructed using the
variance of the coincidence obtained in section 5. Important
discussion and conclusions are given in section 7.

are obtained

2. The Probabilities P(C) andP(C, ) in

Terms of the Hypergeometric Function
F
1n

In this section, the probability of the event C and that
of the event C;,, P(C) and P(C, ) respectively, are
written in terms of the hypergeometric function {F,. The
results are summarized in form of Theorems 1 and 2.

Theorem 1. The probability of the coincidenceC , in (1.4),

is given by

¥
P(C)=e i=l

[111 A1 H&] (2.14)

Then, under the null hypothesis Hg, see (1.9),
P(C|4 =0,i=12,---,n)

_e M F (1;1’1’.__’1; 9”)_ (2.15)

Proof. From (1.5), we have

(2.16)

=e i=1 = 7
sZ;')[(l) I" S!
A

_e =l

(111 11‘[4}

Hence, under Hg,
P(C|4=0,i=12,---n)

S
=g i=l (2.17)

{111 .k ]‘M]
e F, (1;1,1,---,1;9”).

It is known that, for n=2, P(C) can be written in

terms of the Modified Bessel of the first kind [7,14].
Theorem 1 generalizes the results in [7] for any integer
n>2. We also would like to point out that the series that
Griffths [7] calls remodified Bessel functions are in fact
hypergeometric functions ¢ F, [1,11].

Theorem 2. The probability of any event defined using
(1.6) is given by

P(Cl,m) =

[ ]el%ﬂ‘ [H21]| [1;|+1’N.l|+1‘1’.”'1;§/1i} (2.18)

Then, under the null hypothesis Hg,

P(Cim |4 =6,i=12n)

n (2.19)
=[ je”99'”‘an(1;|+1,...,|+1,1,.--,1;0”).
m

Proof.
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AT *

n

Lk ()

© r(se) (H”‘J

soIM (s+1+)r" M (s+1)  s!

X

n

(¥ (3

<[00

(e

n
x 1Fy [1;|+1,--~,| +1,1,---,1;H4-J,
i=1

(2.20)
where
n n!
[m]:m- (2.21)
Hence, under Hy,
I:)(Cl,m | 4 =6,i=12,---,n)

>4 |

:( Jel =1 {Hﬂ«l]
(2.22)

F, [1;|+1,..-,| +1,1,---,1;1£[21J
i=1

n
=(mje‘”99'm .F (1;| +1,.--,|+1,1,..-,1;9").

3. Moments and the VVariance Associated
with the Event C in Terms of the
Hypergeometric Function ;F,

Here, the moments and the variance associated with the
coincidence C are written in terms of the hypergeometric
function ;F,. We mainly focus on the coincidence C

rather than C; ., , the reason of doing so will become clear

later in section 6. Results are summarized in Lemma 1 and
Theorem 2.

Lemma 1. The yth moment ., of the coincidence C is

given by
_Z/II n n
w, =e i (H&J ( 12, .-,2;]‘[11},(3.23)
i=1 i=1
where y=1,2,3,---.

Proof. The yth moment associated with the coincidence
is given by

__%114 n o0 (S +1)7 [1_{21 J
—g I= . N
{HA]S; [(s+1)1"
EA( [(s+1) (HA
i o7 (s+)r" 7 (s+2)  s!

i n 0 lﬂ[%]
—ei T[4 |3 Ds [i=1

i-1

o[ [ !

I
—
o~
Ms

(3.24)

=24 (n n
=e = | T4 |1F [1;1, 1,2, --,2;]‘[21}.
i=1 i=1

Theorem 3. Under Hg, the first order moment (mean)
associated with the coincidence C is

m=e 0" F, (1;1,2,-..,2;9” ) (3.25)
while the second order moment is
1y = "09" F, (1;1,1,2,...,2;9” ) (3.26)
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Thus the variance associated with the coincidence is

0% =ty ()" =€ 0" 1y (111.2,,2:0"
g2 g2n [1Fn (1;1, 2. 2:0" )T .

Proof. Setting ¥ =1in (3.24) in Lemma 1, and using the
fact that under Hg, 4 =6,i=12,---,n, gives

—nH n (1)s (9” )S
’ szo(l)s[(Z)s] s!
F, (1;1,2,...,2;0”),

(3.27)

(3.28)
-n@
=€ n (9”1

while setting y =2 and taking into account the null
hypothesis gives
S
")

s! (3.29)

—n99n - (1)5
S[wsF[@s]"
e 9" F, (1;1,1, 2,-.-,2;9”)

Hp =¢

Hence, using the fact that the variance o = 1, —(yl)2
gives (3.27).

4. Asymptotic Evaluation of P(C) and
P(C, ) underHy, and for Large ¢

In this section, we consider the case withn>2, and
derive the asymptotic approximations of the probabilities
of C and C; ,, when & is large. The case with n=2 is

considered later in Appendix A. The main reason is that
the formulas used here do not work forn=2. The results
are summarized in Theorems 4 and 5.

Theorem 4. Under Hy, see (1.9), if n>2, then for

large 6 (6 >15),
P(C) ~ 2(270)Y2"2q712, (4.30)

Proof. To prove (4.30), we use formulas (16.11.1),
(16.11.3), (16.11.4) and (16.11.9) in [11]. Setting p=1

and g=n in (16.11.3) yields x=n and
v=1-n+(n-1)/2=1/2-n/2. Substituting p=1 and
g=n, x=nand v=1/2-n/2 in (16.11.1) gives

1/2-n/2 n/2-1/2 —1/2
Ep,q (2)=E1n(2) =(27) n n
In &
Z ; (nzlln
j=0

1/2—-n/2—Im
— (2”)1/2—n/2 n—]JZ (len )

)1/2—n/2—lm— j

(4.31)

/n & -j
ZCJ (nzlln) J ’
j=0
where c;is given by formula (16.11.4) in [11]. We now

let z=-0", use formula (16.11.9) in [11] and obtain

.Fa (1;1,1---,1;9”)

- ,F, (1;1,1---,1;—(—0”)) = 2E;, (9”)
N 4.32
_ (27)l2 11212 (9)1/2 n/2 (4.32)
ln &2 i
-]
Y>.ci(no)y,o>>1.
j=0
Hence, dropping the terms corresponding to j >1 while
keeping the leading term correspondingto j =0 yields

P(C)

4.33
e F, (1;1,1,.-.,1; o ) ~ 2Q270)Y? M2V 2 (4:33)

Theorem 5. Under Hy, see (1.9), ifn> 2, then for large
6 (6>=15),

P(Cim) ~ 2( ](2 ) i (4.34)

Although, the proof of Theorem 5 is similar to that of
Theorem 4, we prefer to show it here. For instance, one
should doubt about (4.34) since the subscript | in (2.19)
does not appear in its asymptotic approximation (4.34).
Proof. To prove (4.35), we use formulas (16.11.1),
(16.11.3), (16.11.4) and (16.11.9) in [11] as before.
Setting p=1and q=n in(16.11.3) yields x =n, and

v=1-[1+)m+L(h-m)]+(n-1)/2
=1/2-Im-n/2.
Substituting p=1 and g=n |,
v=1/2-Im-n/2 in (16.11.1) gives

x=n and

Ep'q (Z) — E]_,n (Z) — (271_)1/2—71/2 nlm+n/2—1/2

Xn—llzenzl/n i c nZ1/n
J

j=0

1/2-n/2—Im—j

4.35
_ (2”)1/2—n/2 77 (len )1’2‘”’2‘"“ (4.35)

20y ()

where c; is given by formula (16.11.4) in [11].

We now let z=-@", use formula (16.11.9) in [11]
and obtain

O )
ST

.F (1|+1 A1l 19”)

= P (L2 410 L ~(-0") ) = 26y (07 ) (4.36)
_ (2”)1/2—n/2 n-1/2 ( 9)1/2—n/2—lm
1/ o0 .
<™ 3¢ (n0) 05> 1.
j=0
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Hence, dropping the terms corresponding to j>1 while
keeping the leading term corresponding to j =0 yields

P(Ci,m)
n

:[ ]e_ngelman(l;l+1,m,I+1,1,---,1;0”)
m

_ 2[ " j (2)Y2-N/2 V22012 (4.37)
m

_ 2[ ”J(Zﬁe)l/zmz T
m

5. Asymptotic Evaluation of Moments of
the Coincidence for Large 6, and
under H,

For the same reason as in section 4, we also consider
that n>2, and as before, we use formulas (16.11.1),
(16.11.3), (16.11.4) and (16.11.9) in [11] to obtain

asymptotic expressions for the yth moment s, and the

variance of the coincidence C, %, which are valid when
@is large. Results are given in Theorem 6.
Theorem 6. Under Hg, see (1.9), ifn> 2, then for large

0 (6=15),
u, =22 )22 V2 g2y -ni2 (5.38)
And the variance is asymptotically given by
o2 ~ 2222 V281202 _ ol (p y1on g30 (5 39)

Proof. To derive an asymptotic expression for x, valid
for large 8 (6 >15), weset p=1and g=n in (16.11.3)
in [11] and obtain x = n, and

v=1-[y+2(n-y)]+(n-1)/2=1/2-y-3n/2.

Substituting p=1 and gq=n , x=n and
v=1/2-y—-(3n)/2 in (16.11.1) gives
Epq(2)=En(2)
_ (2n)V2 2 /2-12, 12 n/"
] (5.40)

o0
1/n
xz ¢ (nz )
j=0

o 1/2+y-3n/2
— (2”)1/2 I"I/2rl 1/2 (Zl/ﬂ)

1Un X —j
nz 1/n
xXe E cj(nz ) ,
j=0

where c;is given by formula (16.11.4) in [11].

Setting z =-0"in (5.40), taking into account the null
hypothesis Hg, and using formula (16.11.9) in [11] as
before yields

(5.41)

— 2E]_yr| (en ) — (2”)1/2—ﬂ/2n—1/2
X(0)1/2+7—3ﬂ/2 enz n Z Cj (ne)_] '9 >> 1.
=0

Hence, dropping the terms corresponding to j>1 while
keeping the leading term correspondingto j =0 yields

u, =0 F, (1;1,---,1,2,---,2;9”)

(5.42)
- 2(27[)1/24/2 n71/291/2+y7n/2l
And hence,
o’ = H2 —(ﬂl)z = Hy=2 _(/u}/:l)z
~ 2(27)l2 2 U2 g8l2-nI2
_(2(27[)1/2—n/2 n—1/293/2—n/2)2 (5.43)

_ 2(2”)1/2—n/2 n_”295/2_”/2

—an~ o)t ed

6. A Chi-square Goodness of Fit Test and
Confidence Interval for 6 via
Coincidence

In this section, we use the fact that, under certain
conditions that we are going to mention shortly, the
coincidence C can be interpreted as the null hypothesis,
see (1.9) or (1.11) and thus establish a chi-square
goodness of fit test to examine the null hypothesis Hg via
the variance of the coincidence C , and consequently
construct a 100(1-«)% CI for the parameter @if there is

no significance evidence to reject Hy. We also consider
that @ is large (€ >15)so that we apply the Central Limit

Theorem (CLT). This justifies the derivation of the
asymptotic approximation of the variance of the
coincidence C for large @ in section 3.

For n centers and each receiving a total of
Ki
Xj= Z Xik,1=12,3,---,ncalls at the time K; , we define
k=1
the overall standard deviation as
2 1 n 3 2
S :n—ZZ(xik -GM)",  (6.44)
[Z KiJ_:Ll:lk:l
i=1

where the generalized mean GM is given by
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181 J 18X 18+
GM == =3 X ==Y 2L==3"X;. (6.45)
nia Ki k=1 Nia Ki n i=1

If A; =215, then X;, approximately follows a normal
distribution with mean A; and variance A; by the CLT

[4]. Thus,
Xik =~ N(Aj,A). (6.46)

After a certain amount of time, K; hours, and under the
null hypothesis Hg,

Xik = N(KiAj, KjA;). (6.47)
— Ki

Theorem 7. If X; :KAZ Xix is a minimum variance
=

unbiased estimator (MVUE) [4] for 4 and K; =K for
all i, and Hy can not be rejected, then the probability
that H, is true is approximately given by

P(Hg :true)~ P(C), (6.48)

where P(C) is given by (2.15) or (4.33) when the

parameter 6 >>1.
— Kj
Proof. The proof is straightforward. If X; :KAZ Xik 18
=t

a minimum variance unbiased estimator (MVUE) [4] for
4 and K; =K for al li, and the null hypothesis can not

be rejected, then
P(Ho:true)=P(H =4 =--=1,)

~P Xl_XZ_ _xn
K K K

=P(Xy=Xy="=X,)=P(C).

(6.49)

Moreover, if there is no evidence to reject Hy, we shall
expect a coincidence to occur after K hours, and hence,

K K
X1 = X, Xp = D Xy,
k=1 k=1

X, :kilxnk - N(&,az),

(6.50)

where o is the variance of C and is approximated by
(5.39) if @ is large. In that case,

(nK -1)s,? 2

: (6.51)
0_2 nK -1
where

n K
S (Xix ~GM )2, (6.52)

nK-1i53a

Using (5.39) gives
(nK -1)s,2

2
~ XnK -1 (653)
202 )1/2—n/2 n-Y2g5/2-n/2 —4n’l(2 )1—n 93" n

Thus a Chi-square (;(2) goodness of fit test can now

be carried out as following. The null hypothesis Hy will
be rejected if
(nK —1)s,2
2(2”)1/2—n/2n—1/295/2—n/2 _4n—1(2”)1—n 93—n (654)

< sika(al2)
or (and)
(nK —~1)s,?
2(2n) N2 V23202 _ gy (o) g3 (6.55)

> rhcal-al?2),

where « is the significance level needed to be achieved
by the decision maker.

If that is not the case, there is no significant evidence to
reject Hy, a 100(1-«)% confidence interval for the

variance of C, & can eventually be obtained,

nK —1)s.2 nK —1)s.2
(2 )sn <ol < g )% . (6.56)
Ink-1(a12) Inkad-al2)
and leads to a confidence interval for @,
6, <0<0,, (6.57)
where ) and 6, respectively satisfy
2(27[)1/2*”/2 n71/2 ('91)5/2—n/2
nK =1)s 2 (6.58)
_4n71(2”)17n (91)37n — g ) n
Ink-11-al2)
and
2(2”)1/2—n/2 n—1/2 (02 )5/2-[’]/2
(NK —1)s,2 (6.59)

—an(27) " (0,)* " =5 :
nk-1(a12)

For n=3 and n=5, (6.58) and (6.59) can readily be
solve, while for n=2,4 and n>5, (6.58) and (6.59) can

readily be solved using basic numerical methods.
For n=3,

3K —1)s42
@:%43)1’2”% (6.60)
() a4 X3ka(-al2)
and
3K —1)s,2
0, = 11/2 +(3)1/27r(2#. (6.61)
() a4 Xak-(al2
For n=5,
r -1/2
= 1/2l 14 - 2 (6.62)
(@7 ®) 1_2(5)1/2,,2M
I ZSKfl(l_a/Z)_
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226" 7 (5K —1)s52

ZSKfl(a / 2) i

.(6.63)

0, =
1-2(5)V% 72

7. Discussion and Conclusion

Having expressed the probability of the coincidence C
given by (1.4) and that of C; , given by (1.6) and the
moments of C in terms of the special function |F, for

n>2 (Theorem 1, Theorem 2 and Theorem 3) on one
hand, and in terms of the modified Bessel function of the
first kind of order ¢, 14 (Corollary 1) if n=2 on another,

we also derived their corresponding approximations
(Theorem 4, Theorem 5 and Theorem 6).

Griffths [7] defined some coincidences, for example the
near coincidence (see (1.7)), and expressed their probabilities
in terms of some power series that he named re-modified
Bessel functions. Here we have shown in Theorem 1 that
these series are indeed hypergeometric functions {F, for

any event that can be defined using (1.6).

We also found that if X_I is a minimum variance
unbiased estimator (MVUE), for 4 [4] and K; =K for
all i and there is no evidence to reject the null hypothesis
Ho: =4 =--=4,=60, where 6 is some positive
number, then the probability that Hq is true can be

approximated by that of the coincidence C , (Theorem 7).
One may understand this fact this way. If it happens that
Hg is true almost surely then P(C) =1. This scenario is

no longer a coincidence because the centers become
undistinguishable. But since P(C)<1 always, then we

shall be able to distinguish one center to another.
Moreover, if the probability that Hg is true almost

equals the probability of the coincidence C, and the null
hypothesis Hy can not be rejected, then the variance of

Xj,i=12,---,n is that of the coincidence Hg. In that

case, with a ;(2 test as established in section 6, if there is
no evidence to reject Hy, one can readily construct a
100(1- )% confidence interval (CI) for the parameter 6

(section 6 and appendix A) using the variance of the
coincidence C (or via coincidence).

The results obtained in this paper can be used, for
example, to achieve better results in telephone traffic
measurements [2].

A. A Chi-square Goodness of Fit Test and
100(1-a)% CI for & via Coincidence

for n=2

In sections 4 and 5, we considered that the number of
call centers n is greater or equals 3 (n > 3). As mentioned

before, the main reason is that the asymptotic expansion of
the hypergeometric functions |F, for 8 >>1 in sections 4

and 5 is valid when n>3. Here, we consider that n=2,
write the first and second moments ¢4 and u, in terms of
the modified Bessel function of the first kind, and use the
asymptotic expansion of the modified Bessel function [1]
to derive the asymptotic approximations for s and s
valid for >>1. A ;(2 goodness of fit test is established
and hence a 100(1-«)% CI for the parameter & is
obtained if the null hypothesis Hy is not rejected.

Definition 2. The modified Bessel function of the first kind
of order ¢, ls is the series (formula 9.6.10 in [1])

|¢(X):(%X)¢ i (%X )

S:Om, (A64)

where ¢ is some number.

Corollary 1. For n=2, the first and second order
moments of the coincidence C , see Theorem 3, are

m=e200% R (; 2;92) =0e201,(20) (A.65)
and
1y = 2092 OFl(;l;BZ) =0%15(20) (A.66)

respectively.
Thus the variance of the coincidence is

0% =y~ (1)’
2 A (A.67)
= 6%7%%14(26) - 6% [1,(20)°.
Proof. Setting n=2 in Theorem 3 yields
= 20%F, (1;1, 2;92) —e 2092, Fl(; 2 92)
. 02 (A.68)
—e 2y 1 ( )
s=0 (2)3 S'
Rearranging terms, setting X =26 and ¢ =1 in (A.64)
gives
2
—2092 1 (‘9 )
S L)
=@ ¢? (L1 A.69
¢ (2 ) ; [(1+s+1)s! (A.69
=0e72%1,(20).
On the other hand,
1y =€ 72092 F, (1; 11 92)
e 9% R, (;1; 92) (A.70)
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Rearranging terms, setting x =26 and ¢ =0 in (A.64)
gives

e

-~ (A7D
(0+s+1)s!

SN
N
(DI
N
S
—_
N[
—~
N
co
N—
S—
o
w
LDMs

=0%7%%14(20).
Hence, the variance of the coincidence is
0% = 1y —(1)? = 077291, (20) - 0% 11, (20)]°. (A.72)

Theorem 8. If 8 >>1, then for n =2, the variance of the

coincidence C, o2, is asymptotically given by
3/2
2(n)Y? A

Proof. The asymptotic approximation of 1,(26),0 >>1
(formula 9.6.10 in [1]), is

ezg
(47z¢9)1/2

14(20)= (A.74)

for any ¢. Then,

1/2
= 067201, (20) ~ 0e° (o (A.75)
1/2 4

(470) 7
and
2.-20 2,.-20 e’
,u2=He |0(29)~6’e 401/2
. (470)" (a76)
0
- 2(7[)1/2 )
Hence,
3/2
2 2 0 0
O —/,lz—(,ul) —W—E. (A77)

Following section 6, a chi-square goodness of fit test
can be conducted as following.

The null hypothesis Hy will be rejected if

2K ~1)s,°
% < lZZKfl(a / 2) (A78)
2(m)V2 CAr

or (and)

(2K ~1)s,?

2
0312 P > yok-1d—al2), (A.79)

where, as before, « is the significance level needed to be
achieved by the decision maker.
If there is no evidence to reject the null hypothesis Hy ,

a 100(1- )% ClI for @ is thus given by

6 <0<6,, (A.80)
where ) and 6, respectively satisfy
2
ﬁ_i _ _(2K-1)s," (A.81)
202 A A a(-al?)
and
2
0" 6y _ (2K-)s, . (A.82)
202 A g a(al2)
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