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1. Introduction

The fixed point theory centers on the process of solving
the equation of the form T(x)=x . One of the most

widely used theory is Banach fixed point theory and its
several extensions in generalized metric spaces. Therefore,
fixed point theory on partially ordered sets has been
studied recently in [1,3,8,10,11,13]. For example, fixed
point theorems for nonlinear and semi-linear operators on
order intervals [1], coupled fixed point theorems [9] and
extended the theoretical results to fixed points in partially
sets [10] etc. On the other hand, given non-empty subsets
A and B of the partially ordered set X and a non-self
mapping S from A to B, one can perceive that the

equation S(x)=x is improbable to have a solution.

Naturally, best proximity point theorems on partially
ordered set are also be studied in [4,5,6,7].

It is well-known that those abstract results can be
applied to obtain an abundance of concrete results for some
special problems, for instance, (a) differential and difference
equation; (b) integral equation; (c) periodic boundary
value problems. The purpose of this paper is to obtain the
existence of solution of the integral equation for mixed
monotone, contractions in the setting of partially ordered
sets endowed with metrics. It is remarked that the unique
solution of integral equations in this paper are established
in the setting of ordered metric spaces whereas the fixed
point theorems in [1,3,9,12] are elicited in the framework
of fixed point theorems on partially ordered metric space.

2. Fixed Point Theorems in Partially
Ordered Metric Spaces

Definition 2.1 [2] Let (X,<) be a partially ordered set,
T: X > X be a mapping. If x<y= T(x)<T(y),
then T is said to have the monotone increasing property.
Let (X,g) be a partially ordered set and suppose
(X,d) is a complete metric space. Let T: X — X be an

increasing and continuous mapping. The following
Theorems establish the fact that the contractive nature of
T is not restricted to the entire set X but only restricted

to the comparable elements of (X <)

Definition 2.2 [14] Let X be a set and let s>1 be a
given real number. A functional d: X xX — R, is said

to be a b -metric if the following conditions are satisfied:
1. d(x,y)=0 ifandonly if x=y;

2.d(x,y)=d(y,x) forallx,ye X ;

3. d(X,Z)SS[d(X, y)+d(y,z)].

A pair (X,d) iscalled a b -metric space.
Theorem 2.1 [10] |If there exists A<1 with
d(T(x),T(y)) < rd(x,y), whenever y<x and there
exists Xq € X , with Xy <T(Xo), then T has a fixed point.
Theorem 2.2 [11] Assume that there exist upper and lower
bounds of the pair {x,y} for any x,y e X . If there exists
A<1with d(T(x),T(y)) < Ad(x,y), whenever y<x
and there exists Xy € X , with Xy <T (Xg) or X9 2T (Xg),
then T has a unique fixed point u. Moreover, for any
y e X , the orbit {T" (y)} converges to the fixed point u .

Let I =[a,b], X =C(I,R), we define the following
order relation in X :x,yeC(I,R), x<y<x(t)<y(t),
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for vtel, then (X,<) is a partially ordered set. Define
the metric on X as the follow:

d(x, y)=sup|x(t)—y(t)|,(Vx,yeC(I,R))
tel
then (X,d) is a complete metric space.

Next, we consider the existence of solutions for the
following integral equation for an unknown function u

(see [3]):
+xj (zu(z))z,(tel), (1)

where f:IxR—>R, G:lxl—>[0,+»], v:I >R are

given continuous functions.
Let X be the set C[a,b] of real continuous functions

v(t)| St

is easy to check that (X,d) is a complete metric space.

on [a,b],d(u,v) =?2P|u(t)—v(t)| = T§x|u(t)—

Define amapping T: X — X by

+7»J. )dztel

Then u(t) is asolution of (1) if and only if it is a fixed

pointof T .
Theorem 2.3 Consider the integral equation (1) under the

following assumptions:

(Hy) 0<i<1;

(Hp) for all xel , if uz(t)<u1(t) , then
0< f(xup(t))—f(xuz(t))<|u(t)-uy ()]

(H3) 0<G(t,2)< %a,v(t,z)dﬂ :

vc-

(Hy) 3% <C(L.R),

Then ( ) has a unique solution u. Moreover, for any

Xo <T (Xo)orxg =T (%)

y € X, the orbit {T“ (y)} converges to the solution u .
Proof. Let u, (t)<uy(t), then

- v(t)+xj:G(t,z Z,Uy(z dzj
LG (t2)(f (zu(2))-

(
It implies that T (uy(t))<T (uy(t)) .
increasing and continuous mapping.

d(Tug, Tuy) = max|T (u (1))=T (uy (t))|
(zuy ( ))dzj
(z,uy( ))dz)

f(z.up(2)))dz 0.

So T is an

ijG(t,z)( f(z.u(z))-f (z,uz(z)))dz

= max

tel
<X—J. | z,u(2))- f(z,up(z ))|dz
<X—j |ug (2) (z)|dz
<amax|uy (z)-up (z)|

tel
=d (ug,up).

Obviously, there exist upper and lower bounds of the
pair {x,y} forany x,y e C[a,b]. Hence, all conditions of

Theorem 2.2 are fulfilled. This means that (1) has a
unique solution u .
Moreover, for any yeX , the orbit {T”(y)}

converges to the solution u .
Next we present an example as follows.

Example 2.1 In the integral equation (1), let v(t)=t,

A:%,G(s,t)sl,azo,bzl, f(s,t)=s+t. Then (1)

become

)Mz tel (3)

Let xg=t, then xg <T(Xy). Now, all conditions of
Theorem 2.3 are satisfied. On the other hand, we can easy
to solve the integral equation (3) and the unique solution

isu(t)=t+1.

u(t):t+%_[;(z+u(z

3. Coupled Fixed Point Theorems in
Partially Ordered Metric Spaces

Now, we endow the product space X x X with the
partial order as the following:

(wv)<(xy)e

Definition 3.1 [2] Let (X,<) be a partially ordered set,

u<xy<v, for(u,v),(xy)e XxX .

F:XxX — X be a mapping. If F(x,y) is monotone
increasing in x and is monotone decreasing in vy, that is,
for any x,yeX , it x.,XxeX and
X <X = F(x,Y)<F(X,y) and if y,y,eX and
y1 <Yz imply

F(Xy2)<F(X ).

Thus we say that F has the mixed monotone property.
Definition 3.2 [2] We call an element (x, y)e XxX a
coupled fixed point of the mapping F , if
F(x,y)=xF(y,x)=y.

Theorem 3.1 [2] Let F: X xX — X be a continuous
mapping satisfy the mixed monotone property on X .

Assume that there exists k e [0,1) with
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k
d(F(x, y),F(u,v))sz[d(x,u)+d(y,v)],
for (u,v) <(x,y).
If there exists X, Yo € X such that Xy < F(Xg,Yg) and

F(Yo:%0)<Yo-

Then, there exist x,y e X such that F(x,y)=x and
F(y.x)=y.

Theorem 3.2 [2] In addition to the hypothesis of

Theorem 3.1, suppose that ever pair of elements of X has
an upper bound or a lower bound in X, then x=vy.

We assume that T and F are related by the relation
T(x)=F(xx).

Next, we will study the existence of a unique solution
to the integral equation (l) , as an application to the fixed
pointed Theorem 3.2.

Let XxX=C(I,R)xC(I,R) , then XxX
partially ordered set if we define the following order
relation in XxX : (xy)<(uv)e x(t)<u(t) and
v(t)<y(t), for (x,y), (uv)e XxX andforall tel.

Consider the integral equation (1) under the following

is a

assumptions:
(Hi) 2>0;

(Hz) there exists u>0, for all xe 1, if uy(t)<uy(t),

then 0<  (x,uq (t))— f (x,up (1)) < pfug (t)—up (t)].
Let
< (t,7) = G(t,z)+2|G(t,z)|’
K (t7) = G(t,z)—2|G(t,z)|’
then  G(t,z)=K((t,2)+Ky(t,z) and Ky(t,z)>0,
K, (t,z)<0.
Define F: X xX — X by
F(x,y)(t)=v(t)+kj:k1(t,z) f(z,x(z))z

(4)

+xj':k2 (t.z) f(z.y(z

))dz,te l.

Now, we will show that F has the mixed monotone
property. Indeed, for x; < Xy, thatis X (t) < x, (t), for all
tel, we have

F(xy)(t)-F (e y)(t)
=v(t)+ [ Ky (t2) f (23 (2))z
[T, (,2) f (2.y(2))z

) (232 (2))z

+kj: ky (t.2) f(z,y(2))dz

(t)+kj: ke (t,z

2)(f (2% (2))~ f (2% (2)))dz 0.

ST
(X, Y)(t) < F(xp,y)(t) for vtel,
<F g )

).

Hence, that is,

F
F (0 y)(t)
y2 (1) <y (t

F(xy1)(D)=F (x.y2)(t)

=v(t) ”‘Iakl t,z) f(z.x(z))dz

[Tk (62) 1 (21 (2))iz
v(t)+2[ Ky (t,2) f (2.x(2))dz
[k, (t,z)f(z,yz(z))dz

[ ko (t2)(F (2 (2)) (2)))z <o.

Hence, F(x,y1)(t)<F(xy,)(t) for tel , that is,

F(xy)(t) < F(xy2)(t).

Thus F(x,y) is monotone increasing in x and is
monotone decreasing iny .

Now, for (u',v)<(xy) , that is, x(t)>u'(t),
y(t)<v'(t) forall tel, we have

d(F(xy),F(u\v)) = max|F (x y)(t), F (u'.v) (t)
- v(t)+2f K (t.2) F (2.X(2))dz
STk (t2) f (2, ()
+xj ke (t,2) f (z,u'(2))dz
+xjak2(t,z f(z,v'(z))z
 PRata)(f(zx(@)- 1 (2u(2)e
T o ()1 (2.y(2)- 1 (2 ()

xj;kl(t, z)u|x(z)—u’(z)|dz

(X2, y)(t) Similarly, if y, <y, that is

forall t el , we have

<max|
tel +k_[akz(t,z)u|y(z)—v’(z)|dz
b
kj'a|G (t, z)|u|x(z)—u’(z)|dz
STSIX

+k.f:|G(t, z)|u|y(z)—v’(z)|dz

max |x(z)-u’(z)
Smaxxuj:|G(t,z)|dz tel | |

tel +nsgx|y ’(z)|

- Tgalxkpj':p (t.2)ldz(d (x,u")+d (v, y)).

Assume that

(Hg) r?gxxuj:p(t, 2)jdz <%
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(H;l) there exists Xg,Yg € X such that Xg < F(Xg,Y)
and F(Yg.%)<Yo-

Theorem 3.3 Suppose the integral equation (1) satisfy
(Hi)—(HL}), then (1) has a unique solution u .

Proof. From the above analysis and Theorem 3.2, we can
immediately obtain the result.

Example 3.1 In integral equation (1), let

3 .2
V(t) t_+t__g g)\‘_g
8 4 4 2 4’
G(t,z)=t-z,a=1b=2,
f(z

)= z+ﬂ,z e[12],
4
then (1) become

2 t2 15t 19
u(t) =—+—-=—+—

8 4 4 2 (5)
+= I z+zu ))dz,te[l,Z].

Let uz%,then f(z,u)satisfy(H'Z).

kz(t’z):{ 0, t>z

t-z,t<z

t-z,t>z
kl(t’z):{ 0, t<z’
15t 19

f(xy)(t) thtI‘T*?
+%_[12k1(t,z)f( 2))dz
+§_[2k2 (t.z) f(z,y(2))z

3 .2
vt 15t+19+3I (t—z)(z+ﬁ)dz
2 4% 4

+§_[t2(t—z)(z+z%)dz.

"8 4 4

Then
b 3 1
A G(t,z)dz<s—<~=.
maxiu[ ]G (12 <10 <7
2
Let Xp=4,yo=8 , then xogF(xo,y0)=I+4 and
3 .2
t° t© 15t 25
F(X0,Yo)=—+———+—<Yp.

4 4 8 4
So, all conditions of Theorem 3.3 are fulfilled. This
means that (5) has a unique solution u.
Next, we will study the existence of a unique solution

to the following system of integral equation as another
application of the fixed pointed Theorem 3.2.

where t[0,T].
A solution of the above system is a pair
(x,y)€[0,T]x[0,T] satisfying the above relations for all

te [O,T] .
We consider X €[0,T] endowed with the partial order
relation:
x<ye x(t)<y(t) forallte[0,T].
We will also consider the following metric on X :

y(1).

Notice that d is a metric and d can be represented by
using the supermum type norm

d(xy)= tLT[1(<;:1’>T<]|x(t)_

d(xy)= ||x(t)— y(t)"C .

Then we have the following existence and uniqueness
result.

Theorem 3.4 Consider the integral system (6)under the
following assumptions:

(1) g:[0T]>R and f:[0,T]xR®> >R are
continuous and G:[0,T]x[0,T] > R™ is integrable with
respect to the first variable.

(2) f(s,-) has the generalized mixed monotone

property with respect to the last two variables for all
Se[O,T].
(3) There exist o,8:[0,T]—R" in L}[0,T] such that

for each X, Xy, ¥;,¥p, € R with x <y; and y, <x, (or

reversely), we have
[ (5%, %) = F(s,y1,¥2)| < a(s)]x0 = ya| +B(3)|X2 — Y|

foreach s<[0,T].

(4) max (IJG(S,I)&(S)) <%,

te[O,T]

max (J(JT G(s,t)B(s)) <%.

te[O,T]
(5) There exist Xq,Yq €[0,T] such that
X(t)<g(t)+ [] G(s) F(5.x(s). y(s))ds
y(t)> g(t)+'[JG(s,t) f(s,y(s),x(s))ds

or

forall te[0,T].
Then there exists a unique solution (x*,y*) of the

system (6).
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Proof. We can prove that all the assumptions of Theorem
3.2 are satisfied. We define F: X xX — X by

F(xy)(t)=g(t)+ ] G(st) f (s.x(s). y(s))ds

foreach te[0,T].

Then system (6) can be written as a couple fixed point
problem for F:
{x =F(x,y)
y=F(y.x)

First, we will show that F has the mixed monotone
property. Indeed, for x; <x, , that is x(t)<x,(t), for

all te[0,T], we have

F (10.9) (0 F (x5, 9)(0)
) (s(5).¥(5)) ] g
“he { (s (s)y(s) |

F(x,y)(t)<F(xp,y)(t) for all te[0,T],
F (0 y) () <F (. y)(1).

Similarly, if y, >y, that is y,(t)>y(t),
te[0,T], we have F(x y)(t) =F(x y;p)(t) for all
te[0,T], thatis, F(x y)(t)=F(xy2)(t).

Then, for allx>u and y<v or (x<u and y>v), we
have

Hence,
that is ,
for all

d(F(xy)(t).F

= max |F (x
t€[0,T]

=[x~ uIII
+y - v||J t)B(s)ds

<%(d(x,y)+d(u,v)).

We see that all the assumptions of Theorem 3.2 are
satisfied and the conclusion follows.
Next, we conclude our work by an example.

Example 3.2 In integral equations system (6) , let

G(s,t):%s+%,g(t):t+% , T=La(s)=s,B(s)=s,

f(s:x(s) y(s)) =a(s)x(s)~B(s) y(s) = sx(s) = sy(s).

Then (6) become
11 1 t
x(t)=t +3+J';(€s+§)(sx(s)—sy(s))ds

y(t) =t+%+J;(%s+%)(sy(s)—sx(s))ds

(7)

F(xy)(t) :t+%+I§(%s+%)(sx(s)—sy(s))ds
Then
2 1

max (J'OTG(s,t)a(s)j:tg[\&?]U G(s, t)B(s)j_—<E

tE[O,T]

Let xg =10 =3, then XOﬁF(Xo,yo)=§t+% and

4 4
yO S F(yO'XO):§t+§'

Hence, all conditions of Theorem 3.4 are fulfilled. This
means that (7) has a unique solution.

4. Coupled Fixed Point Theorems in
b-metric Spaces

Theorem 4.1 [14] Let (X,d) be a complete b -metric

spaces with s>1 and T: X xX — X be a continuous
mapping with the mixed monotone property on X x X .
Suppose that the following conditions are satisfied:

(1) there exists k e[o,lj such that
s

d(T(xy),T(uv))<

VX=>u,y<v,

g[d(x,u)+d(y,v)],

(2) there exists Xg,y ge X such that Xy <T(Xg, Yo)

and Yo =T (Yg.%0)-

Then there exists x,y e X such that x=T(x,y) and
y=T(y,x).

In this section, we present an existence Theorem for
such a nonlinear coupled system

(8)

where a,beR with a<b, x,yeC[a,b], ¢:[a,b] >R
and K :[a,b]x[a,b]xRxR — Rare given mapping.
Next, we consider the following b -metric on X

_ (P
d(x,y)_tggﬁﬂx(t) y(t)"

It is note that (X,d) is a complete b -metric space with
p=>1.
Theorem 4.2 Consider the nonlinear coupled system (1) :

Suppose that the following conditions hold:
(1) K:[a,b]x[a,b]xRxR — R is continuous;
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(2) K(t,r,,-) has the generalized mixed monotone
property with respect to the last two variables for all

tefab];
(3) There exist continuous mappings
a,B:[a,b]x[a,b] > R",

for each X, X, 1, Yo €R with x <y, and y, <x,
(or reversely), we have

|K(t,r,x1(r),x2(r))—K(t,r,yl(r),yz(r))|p

s2p‘1[a(t,r)p|xl—yl|p+ﬁ(t,r)p|x2—y2|p};
p1(h_ P b P i

(4) tgﬁgﬁ] 2P (b-a)q jaa(t,r) dr<2S ; tgfg’)k()]

_ P b 1 _
2P (b- t,r)Pdr <=, where s =2P7.
(b-a)q jaﬂ( r) F<og - where s

(5) There exists X, , yo € C[a,b] such that

X0 (t)ﬁ¢(t)+j:K(t,r,x(r), y(r))dr
Yo ()= p(t)+ [ K (t.r,y(r), x(r))dr

forallte[a,b].
Then, there exists a pair coupled solution (x,y) for
system (8).

Proof. We can prove that all the assumptions of Theorem
4.1 are satisfied. Define T : X x X — X by

T(xY)(O)=0(t)+ [ K(Lr.x(r),y(r))r,

for each t e[a,b]. Then system (8)can be regarded as a
couple fixed point question of T :

{X:T(x,y)
y=T(y,x).

In the first place, we will prove that T has the mixed
monotone property. For x; < X, , we have

(%2,Y)
trxl

T(x,y)-T
i ).¥(r) ]r<
-ls { Oy

Thus, T(x,y)<T(xp,y) for every element t [a,b].
Similarly, we can know that
T(x Y1) =T (xy,) forall y; <y,.

Then, for all x>u and y<v or (x<uandy=>v), we
have

K (t,r, %y (r

b p
K(t,r,x(r),y(r))dr
d(T(xy),T(u,v))= max ja (Lrx(r). v (DK

tefab] —j: K (t,r,u(r),v(r))dr

1

< tgfg)é] U:1q dr)a _[:

= max (b—a)aIO Jb (t § x(r),y(r)) p

te[a.0] 2K (t,r,u(r),v(r))

p Ib{a(t,r)p|x—u|p ]dr
a +ﬁ(t,r)'0|y—v|p

pa(t,r)P drd (x,u)

a+J‘:ﬂ(t,r)'°drd(y,v)

< max 2P 1(b a)q
te[a b]

p
< max 2P (b-a)q
te[a,b]

=ked (x,u)+kyd (y,v)

1
D d [l d ] [}
<25[ (x,u)+d(y v)]
where
P p
k= max 2P l(b a)q Jba(t,r) dr<i,
te[ab] 2s
k_maxzplba tr) dr<—,
2" teab] jﬂ
1.1,
p q

From the above proof, we find that all the assumptions
of Theorem 4.1 are satisfied.

Example 4.1 For the integral equation (8) , let

tr

a=0b=1,¢(t)=-t, a(t,r):ﬂ(t,r)zz,

K(t,r,x(r),y(r))=t+r+ea(tr)x(r)-
Then (8) become

x(t) =—t+J [t+r+j(x(r)—y(r))}dr

y(t) :—t+jg[t+ r+tzr(y(r)—x(r))}dr E

te[0,1].

y(n].

Define T (x,Y) :—t+J‘;{t+ r+tzr(x(r)— y(r))}dr.

. 1rl p 1
Obviously,  max 2P jo[a(t,r)] dr <o Let

te[0,1]

1t
2 8’

1t i,
Yo zT(yO,xo)=E+g . Then, all the conditions of

Theorem 4.1 are satisfied. It indicates that (8) has a pair
coupled solution
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T ) e ectoapeing

y =T(y"x"),

Acknowledgements

The author Youhua Qian gratefully acknowledge the
support of the National Natural Science Foundation of
China (NNSFC) through grant No. 11572288, and the
financial support of China Scholarship Council (CSC)
through grant No. 201408330049. We are also grateful to
the Professor Jinlu Li for his constructive comments and
suggestions.

References

[1] W. Y. Feng and G. Zhang, New fixed point theorems on order
intervals and their applications, Fixed Point Theory Appl. (2015),
2015: 218.

[2] M. A. Khamsi, Generalized metric spaces: A survey, J. Fixed
Point Theory Appl. 17. (2015), 455-475.

[3] S.Radenovi’ ¢, T. Do" senovi’ ¢,T.A. Lampert and Z. Golubov’ 1’
¢, A note on some recent fixed point results for cyclic contractions
in b-metric spaces and an application to integral equa-tions,
Applied Mathematics and Computation . 273 (2016), 155-164.

[4]

[5]
[6]
[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Jleli and B. Samet, Best proximity point results for MK-
proximal contractions on ordered sets, J. Fixed Point Theory Appl.
17 (2015), 439-452.

S. Sadig Basha, Best proximity point theorems on partially
ordered sets, Optim Lett. (2013), 7:1035-1043.

S. Sadiq Basha, Common best proximity points: global minimal
solution, Top (2013), 21: 182-188.

S. Sadig Basha, Common best proximity points: global
minimization of multi-objective func-tions, J Glob Optim. (2012),
54: 367-373.

B. Samet, Coupled point theorems for a generalized Meir-Keeler
contraction in partially ordered metric spaces, Nonlinear Analysis.
72 (2010), 4508-4517.

T. Gnana Bhaskar, V.Lakshmikantham, Fixed point theorems in
partially ordered metric spaces and applications, Nonlinear
Analysis 65 (2006), 1379-1393.

J. J. Nieto and R. Rodr’ 1guez-L6pez, Contractive mapping
theorems in partially ordered sets and applications to ordinary
differential equations. Order. 22 (2005), 223-239.

A. C. Ran and M. C. B. Reurings, A fixed point theorem in
partially ordered sets and some applications to matrix equations.
Proc. Amer. Math. Soc. 132 (2004), 1435-1443.

T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in
partially ordered metric spaces and applications. Nonlinear
Analysis. 65 (2006), 1379-1393.

Umit Aksoy, Erdal Karapinar and " Inci M. Erhan Fixed points of
generalized admissible contractions on b-metric spaces with an
application to boundary value problems, (2016), 17(6), 1095-1108.
M. F. Bota, A. Petrusel, G. Petrugel, B. Samet. Coupled fixed
point theorems for single-valued operators in b-metric spaces.
Fixed Point Theory & Applications, (1)(2015):1-15.

W. Sintunavarat, Nonlinear integral equations with new
admissibility types in b-metric spaces, Journal of Fixed Point
Theory and Applications, (2015):1-20.



