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Abstract  Divergently different time series are considered in this article. The monthly passengers traffic at Cross 
lines limited, Calabar from 1990 to 2015 and monthly incidence of tuberculosis diseases at University of Calabar 
Teaching Hospital based from 1990-2015. The research adopted the statistical models based on time series analysis 
by Box and Jenkins methodology via the autocorrelation and the partial autocorrelation functions which showed that 
the two series are not stationary. Logarithm transformation was used to stabilize the variances of the two series and 
the residual autocorrelation and the partial autocorrelation functions is made stationary. Both regular and seasonal 
differencing was applied to the two-transformed set of data to obtain stationary series. The study employed ARIMA 
model on the classes of the two series, and the parameters of the identified model were estimated by the use of SPSS. 
The two models so chosen were ARMA (2,1,0) x (1,1,1)12 for passengers’ traffic and ARMA (1,0,1) x (1,1,2)12 for 
tuberculosis cases and forecasts was done for 12 months for the two series. The adequacy of the model was achieved 
and model fit for passengers traffic yields R-square, RMSE and MAPE of 0.876, 9.137, and 27.479 respectively and 
for tuberculosis cases yields R-square, RMSE and MAPE of 0.614, 6.785 and 26.522 respectively, recommendation 
and conclusion was made for the area of study. 
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1. Introduction 
A time series is defined as a sequence of observations 

(measurements) ordered by time {𝑥𝑥𝑥𝑥},  𝑡𝑡𝑡𝑡𝑡𝑡 . We restrict 
ourselves to equidistant time series, i.e the parameter set is 
a finite set of equidistant points of time; 𝑇𝑇 =
 {1,2,3, … , 𝑁𝑁}  observation (𝑌𝑌0,𝑌𝑌−1,𝑌𝑌−2,𝑌𝑌−3,𝑌𝑌−4, … . ) could 
have obtained earlier or later observations 
(𝑌𝑌𝑁𝑁+1,𝑌𝑌𝑁𝑁+2,, 𝑌𝑌𝑁𝑁+3, … . ) had the process been observed for 
more time. The observed sample (𝑌𝑌1,𝑌𝑌2,𝑌𝑌3,𝑌𝑌4, … 𝑌𝑌𝑁𝑁,) could 
then be view as a finite segment of a doubly infinite 
sequence, devoted.  

{ }, 1, 0, 1, 2, 3, 1, 3,2,( . . , .).t N Y NNt
Y Y Y Y Y Y Y Y

∞
− + ++= −∞ = … … …  

Typically, a time series �𝑌𝑌𝑡𝑡,�𝑡𝑡
∞ = −∞  is identified by 

describing the ith element, [1] for example, a time series is 
a series whose values at date t are simply the date of the 
observation: 𝑌𝑌𝑡𝑡, = 𝑡𝑡. 

[2] described the time series as a set of observations 
generated sequentially in time. The set of observations 
generated sequentially in time are available for passengers’ 
traffic, population figures, health figures, prices of all 
kinds of goods and merchandize and other innumerable 
sequence based on industrial, economic and social 
phenomena.  

Observations in these series vary due to several factors. 
Some can be detected easily, such as seasonal variations in 
prices, variation due to the state of the economy in 
population and major calamities in the health cases. 
Assuming that it is possible to separate the contributions 
due to these detectable causes of variation, there would 
remain some variation which can only be attributed to 
random causes as in any natural phenomenon.  

Tuberculosis (TB) is a chronic, infectious disease 
caused by bacteria generally to as “mycobacterium 
tuberculosis complex”. The most important source of TB 
is an untreated pulmonary TB (PTP) patient. When such a 
person coughs, spits or sneezes, tiny droplet nuclei 
containing the tubercle germs are released. Transmission 
is through inhalation of these droplet nuclei. TB is curable, 
provided patients are detected early and treated promptly 
according to the National Tuberculosis and Leprosy Control 
Programme (NTBLCP) guidelines. Tuberculosis diseases 
constitute one of the major public health problems in 
Nigeria. In addition, the social stigma associated with 
these diseases further compounds the problem.  

2. Material and Methodology  

2.1. Data Collection Technique 
The data type and source of this paper mainly, the 

secondary time series data in its analysis. The data were 
collected as follows: 
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(i) Monthly passenger’s traffic at Cross Lines 
Limited, Calabar. 

(ii) Monthly incidence of tuberculosis diseases from 
University of Calabar Teaching Hospital. 

2.1.1. Model Speciation Criteria  
When more than one model is selected from the process 

enumerated in the study, then it becomes necessary to use 
criteria to select best model amongst them. The two most 
common criteria are: 

(i) Akaike Information Criterion (AIC) 
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(ii) Schwartz (or Bayesian) information criterion 
(SIC)  
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Where T is sample size, n is number of parameters 
(e.g.𝑃𝑃 + 𝑞𝑞), and 𝜖𝜖𝑡̂𝑡2  are estimated residuals from a given 
data. [3] state the choice of the best model is based on the 
model selection criteria, the minimum model selection 
criteria compared to others.  

2.1.2. Box and Jenkins Methodology on ARMA 
The objective of Box-Jenkins methods is to forecast 

univariate time series using ARMA models that are in 
conformity with our analysis. The methods are in steps 
and are listed below: 

a) Transform and difference the data to achieve 
stationarity.  

b) By inspecting the sample autocorrelation and 
partial autocorrelations of the data, determine a 
suitable ARMA (𝑝𝑝, 𝑞𝑞) model that parsimoniously 
but completely captures the dynamics of the 
process.  

c) Estimate the parameters of the chosen model. 
d) Perform diagnostic test on the reseals to ensure 

white noise. Make adjustments and estimates if 
needed.  

e) Compute forecast.  

2.1.3. Model Identification  
Identification of non-stationary models, the inability of 

the ACF of PACF to die out is an indication of non-
stationarity. A non-stationary model can be made 
stationary by differencing. An example is a case where 
autocorrelations are large and fails to die out at higher lags. 
Simple differencing will need to be adopted to reduce the 
autocorrelations in such data. However, if a very heavy 
periodic component remains, then it may be evident by 
large correlations at lags 12, 24, 36… for seasonal data.  

The mixed ARMA (𝑝𝑝, 𝑞𝑞)  model can be identified by 
the fact that the sample autocorrelation plot of 𝑃𝑃𝑡𝑡ℎ order 
autoregressive component and 𝑞𝑞𝑡𝑡ℎ order moving average 
component is a mixture of exponential and damped vine 
wave after the first 𝑞𝑞 − 𝑝𝑝  lags. However the partial 
autocorrelation function is dominated by a mixture of 
exponentials and damped sine wave after the first 𝑝𝑝 − 𝑞𝑞. 

2.1.4. Estimation of Parameters for ARMA (𝒑𝒑, 𝒒𝒒) 
Process 

Suppose (𝑌𝑌1,𝑌𝑌2,𝑌𝑌3,𝑌𝑌4, … 𝑌𝑌𝑡𝑡) are generated by an 
ARMA(𝑝𝑝, 𝑞𝑞) model with normal innovations, then the Y’s 
are normal with mean and covariances depending on the 
parameter vectors consisting of the unknown coefficient 
of the lag polynomials. If the lags order p and q are known 
and small, Q can be estimated by maximum likelihood, 
however, this is computationally demanding when the 
sample size T is large as calculations involves inverting 
𝑇𝑇 𝑥𝑥 𝑇𝑇 covariance matrix.  

In practice, most practitioners maximize an 
approximation to the likelihood based on slight change in 
the initial conditions. For example, in the 𝐴𝐴𝐴𝐴(𝑝𝑝) model, if 
we condition on the first p values 𝑌𝑌1,𝑌𝑌2,𝑌𝑌3,𝑌𝑌4, …𝑌𝑌𝑝𝑝  and 
examine the process from 𝑡𝑡 =  𝑃𝑃 + 1,  then maximum 
likelihood is equivalent to the least square regressing of 
the 𝑦𝑦𝑡𝑡  on its p lagged values. Similar modification of the 
initial conditions in the general ARMA case leads to a 
non-linear least squares regression.  

3. Estimation Results 

3.1. Model Parameter Estimation for Traffic 
Flow 

Technique used for estimating the parameters of the 
models identified is [4] and Marquardt Algorithm for 
linear least square estimates and these estimates for the 
suggested models and the fitted models for passengers’ 
traffic in Calabar. Considering the estimates of the 
parameters of the models identified, we may see that the 
probable model to work with is (2,1,0) ∗  (1,1,1)12.  A 
general multiplicative model is represented as: 

 ( ) ) ( ( .( ) )s d D s
p p s t q Q tB B Y B Bφ φ θ θ ε∇ ∇ =  (3) 

Substituting the estimates of the parameters, we have  
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The model can be written explicitly as: 

 

t t 1 t 2 t 3

t 4 t 12 t 13

t 14 t 15

t 24 t 25

t 26 t 27

12

Y 0.5046Y 0.233Y 0.2624Y
0.1340Y 1.5107Y 0.7623Y
0.4860Y 0.3964Y
0.5107Y 0.2577Y
0.3870Y 0.1340Y

– 0.9934 .t tε ε

− − −

− − −

− −

− −

− −

−

= − −

− − +

+ +

− −

−

=

−

+
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Appendix 2 in Figure 2 show the plot of the residuals of 
ACF, PACF and original series for the passenger’s traffic, 
which both are white noise series. Since their residuals are 
small, this is an evidence of good fitting the  
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model to the series. Hence, it is reasonable to conclude 
that the model is adequate. 

3.1.1. Forecasting  
Now that we have shown that the passenger traffic data 

is well fitted by a model of the form in 3.1 it is convenient 
to values inserted, future using this model as with the 
parameter values inserted, future values of the series may 
be forecast. The minimum mean square error forecast at 
lead time L and origin t may be given by  

 

( ) t t 2

t 3 t 4

t 12 t 13

t 14 t 15

t 24 t 25

t 26 t 27

12

ˆ 0.5046Y 0.2330Y
0.2624Y 0.1340Y
1.5107Y 0.7623Y
0.4860Y 0.3964Y
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0.3870Y 0.1340Y

– 0.9934 .
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l l
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l l
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Forecast data is then generated to cover the period 
January to December 2016, using December 2015 as the 
origin as shown in Table 3. 

3.2. Model Parameter Estimation for 
Tuberculosis Cases 

From estimates of the parameters identified we may 
now consider (1,0,1) ∗  (1,1,2)12 as the model to work 
with a general multieliative model is represented as: 

 ( ) ( ) ( ) ( ) .s d D s
p p s t q Q tB B Y B B εφ φ θ θ=∇ ∇  (8) 

Substituting the estimates of the parameters, we have 
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12 t
12 24

(1 0.9050 )(1 0.4092B ) Y

(1 0.8 )(1 0.4971B 0.494B ) .t

B

B ε
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= − − −
 (9) 

The model can be written explicitly as  

 

t 1 t 12 t 13

t 24 t 25

1 12 13

24 25

0.9050Y 0.5908Y 0.5347Y
0.4092Y 0.3703Y

0.8 0.4915 0.3977
–0.4940 0.3952 .

t t t t

t t

Yt
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ε ε
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Appendix 2 in Figure 1 show the plot of the residuals of 
ACF,PACF and original series for the tuberculosis cases, 
which both are white noise series. Since their residuals are 
small, this is an evidence of good fitting of the model and 
hence adequacy of the model is achieved. 

3.2.1. Foresting  
From the analysis the minimum mean square error 

forecast at lead from L and origin is be given by  

( ) t 1 t 12 t 13

t 24 t 25 1

12 13

24 25

ˆ 0.9050Y 0.5908Y 0.5347Y
–0.4092Y 0.3703Y 0.8
–0.4971 0.3977

0.494 0.3952 .

t l l l

l l t l t l

t l t l

t l t l

y l
ε ε

ε ε
ε ε

+ − + − + −

+ − + − + + −

+ − + −

+ − + −

= + −

+ + −

+

− +
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This forecast models provide the forecast value for the 
period of January to December 2016 in Table 6.  

4. Discussion 
A time series model was obtained for Passengers 

Traffic at Cross Lines Limited, Calabar for a period of 26 
years. The use of statistical packages was employed for 
accuracy which embraced the [4] methods implemented 
through an algorithm developed by [5] and Marquardt 
algorithm for non-linear least squares (slightly modified 
by G.T. Wilson). In the identification of the model, the 
Autocorrelation and Partial Autocorrelation Functions 
were used as tools in identifying the model. The Akaike 
Information Criterion (AIC) was used to select best model 
amongst those identified. The model chosen is the one 
with least AIC, that is the model that minimized the AIC. 
The auto-covariance and special characteristics for some 
other multiplication models can be found in [4] and in [6]. 
Under box and Jenkins methods, stationarity is important 
because non-stationarity can swamp the effect of other 
dynamics, [7]. The partial autocorrelation function is 
useful in determining the order of a pure autoregressive 
process. As [8] states, the partial autoregressive at lag k, 
denoted by ∅𝐾𝐾𝐾𝐾  is the correlation between yt and yt-k after 
removing the effect of the intervening variables yt-k after 
removing the effect of the intervening variables yt-1,yt-2,---
---yt-kt1. The procedure moderated by [9] postulates that 
before data are analyzed; sometimes they are filtered, or 
treated in a particular way. This calculation is particular 
done using the auto-covariance-generating function. An 
iterative procedure for deciding on transformations of a 
single variable is given by [10,11,12] and [13] all showed 
how suitable transformations of predictor variables are 
sometimes suggested plotting the data in various ways. 
The logarithmic transformation is a special case of a 
family of transformations called the [14] or power 
transformation. 

The residual autocorrelation and partial autocorrelation 
function of the series showed that it is stationary. 
Logarithm transformation was used to stabilize the 
variance of the series. Both regular and seasonal 
differencing was applied to the log-transformed data to 
obtain a stationary series. ARMA (2, 1, 0) x (1, 1, 1)12 
model was the model that was fitted to the series 
adequately. The model obtained was then used to make 
forecasts of passenger’s flow for the company. The 
forecasts were made for a period covering 12 months. 

Secondly, the monthly set of data for Tuberculosis 
diseases from University of Calabar Teaching Hospital 
was also analyzed using Time Series analysis. The data set 
was for a period of 25 years. The same packages as earlier 
mentioned were also employed during analysis for 
accuracy. Also in the identification of the model, the 
Autocorrelation and Partial Autocorrelation Function were 
used as tools in identifying the model. The Akaike 
information Criterion (AIC) was used to select best model 
among those identified. The model chosen is the one with 
least AIC, that is the model that minimizes the AIC. The 
model fit in Table 7 for passengers traffic yields R-square, 
RMSE and MAPE of 0.876, 9.137, and 27.479 
respectively and in Table 8 for tuberculosis cases yields 
R-square, RMSE and MAPE of 0.614, 6.785 and 26.522 
respectively. 

The autocorrelation function and partial autocorrelation 
function of the series showed that it is not stationary. So it 
became necessary to carry out logarithm transformation, 
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and of course appropriate differencing. The model which 
fitted the TB series is the ARMA (1, 0, 1) x (1, 1, 2)12 
model. The derived model was then used to make 
forecasts of Tuberculosis cases for the Hospital for a 
period coving 12 months.  

5. Conclusion  
There has been significant reduction in the monthly 

passengers’ flow in Cross Lines Limited with some 
evidence of reduction in the number of buses plying 
different routes. This has been attributed to the 
introduction of different Urban Mass transit transportation 
by Federal Government, other State Governments and 
other allied transport companies operating in the country. 
Also long waiting time, distance to passengers’ residence, 
attitude of company’s workers and availability of 
affordable transport at any time have been identified as 
some of the reasons why passengers prefer patronizing the 
private owned transport company. They have however, 
remained in business and are functioning proficiently 
having geared up to purchasing new buses and 
rehabilitating the old ones.  

In order to maintain the low trend in prevalence of 
Tuberculosis cases, the National TB control programme 
should identify collaboration with private health care 
providers as one of the future challenges facing the 
accelerated Expansion of the treatment strategy in the state. 
Implementation of treatment strategy in the state should 
not be limited to the Government own clinics, Hospitals, 
and some missionary health facilities since huge patronage 
in the made in the Private Health Clinics by patients. It is 
not enough to combat this problem in Government sector 
only, there is need to involve private sector in the 
implementation of treatment strategy to provide another 
front to combat this public health problem and to help in 

providing/scaling up the case finding activities of 
NTBLCP. 
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APPENDIX 1 
Table 1. Suggested Models for Passengers’ Traffic 

S/NO 
SUGGESTED 
MODELS 
IDENTIFIED 

PARAMETER 
ESTIMATES 

STD. 
ERROR t-RATIO APPROX. 

PROBABILITY 
RESIDUAL 
VARIANCE SES SBC AIC 

1 (2.1.0) x (1.1.0)12 

p(1)= -0.4985 0.056 -8.8929 0.00000000 

0.0648 19.2487 45.4775 34.3762 p(2)= -0.2629 0.05462 -4.6789 0.00000439 

PS(1)=-0.2186 0.576 -3.7931 0.00018039 

2 (2.1.0) x (2.1.0)12 

p(1)= -0.4955 0.0562 -8.8098 0.00000000 

0.0621 18.4659 38.7615 23.9597 
p(2)= -0.2554 0.0565 -4.5229 0.00000000 

PS(1)= -0.2802 0.0588 -4.7646 0.00000297 

PS(2) = -0.2276 0.0635 -3.5866 0.00039208 

3 (0.1.1) x (0.1.1)12 
q(1)= 0.5137 0.0498 10.3115 0.0000000 

0.0626 18.7336 31.6595 24.2586 
QS(1) = 0.3690 0.0568 6.4977 0.0000000 

4 (0.1.2) x (0.1.1)12 

q(1) = 0.4957 0.0579 8.5686 0.00000000 

0.0627 18.6987 36.8026 25.7013 q(2) = 0.0544 0.0583 0.9343 0.35090532 

QS(1) = 0.3741 0.0573 6.5249 0.00000000 
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Table 2. Fitted Models for Passengers’ Traffic 

S/NO 
SUGGESTED 

MODELS 
IDENTIFIED 

PARAMETER 
ESTIMATES 

STD. 
ERROR t-RATIO APPROX. 

PROBABILITY 
RESIDUAL 
VARIANCE SES SBC AIC 

1 (2.1.1) x (2.1.1)12 
 

p(1)= -0.4518 0.2018 -2.2386 0.02593558 

 
0.0559 

 
17. 

4248 

 
33.0776 

 
10.8749 

p(2)= -0.2506 0.0971 -2.5815 0.01032172 

q(1)=0.0615 0.2084 0.2952 0.76814736 

PS(1)=0.5683 0.0805 7.0644 0.00000000 

PS(2)=-0.0414 0.0714 -0.5806 0.56195974 

QS(1)= 0.9692 0.1518 6.3860 0.00000000 

2 (2.1.0) x (1.1.1) 

p(1)= -0.4954 0.0539 -9.3206 0.00000000 

 
 

0.0545 

 
 

17.4472 

 
 

22.4958 

 
 

7.6340 

p(2)= -0.2624 0.0538 -4.9940 0.00000101 

PS(1)= 0.5107 0.0802 7.0031 0.00000000 

QS(1) = 0.9934 0.0023 2.7429 0.00014302 

3 (2.1.2) x (1.1.1)12 

P(1)=-0.6485 0.3541 -1.8316 0.06803238 

 
0.0552 

 
17.4133 

 
33.0351 

 
10.8325 

P(2)=-0.1696 0.1146 -1.4801 0.13991938 

q(1)=-0.1370 0.3558 -0.3849 0.70055147 

q(2) =0.2021 0.2305 0.8767 0.38136060 

PS(1)=0.5632 0.0819 6.8806 0.00000000 

QS(1)=0.0.9882 0.3519 2.8080 0.00532023 

4 (1.1.0) x (1.1.1)12 

p(1) =-0.3915 0.0519 -7.5396 0.00000000 
 

0.0597 
 

18.7606 
 

38.1575 
 

27.0561 PS(1) = 0.5054 0.0771 6.5528 0.00000000 

QS(1) = 0.9635 0.1119 8.6074 0.00000000 

Table 3. Forecasts; Model: (2,1,0)(1,1,1) Seasonal lag: 12 (Input: TRAFFIC, Start of Origin: 1 End of origin: 312) 
   Lower upper 

  Forecast 90.0000% 90.0000% 

1 313 37317.19 25281.17 54659.12 

2 314 31786.60 20639.56 48953.95 

3 315 9754.91 6090.86 15623.13 

4 316 19192.72 11305.73 32581.76 

5 317 9537.15 5383.55 16895.41 

6 318 6018.35 3267.17 11086.19 

7 319 5089.69 2656.90 9750.06 

8 320 4297.99 2164.47 8534.53 

9 321 5767.38 2806.34 11844.51 

10 322 16608.51 7823.61 35257.75 

11 323 23360.76 10665.28 51168.40 

12 324 33463.31 14824.92 75534.50 

Table 4. Suggested Models for Tb 
S/NO 

SUGGESTED 
MODELS 

IDENTIFIED 

PARAMETER 
ESTIMATES 

STD. 
ERROR t-RATIO APPROX. 

PROBABILITY 
RESIDUAL 
VARIANCE SES SBC AIC 

1 (1.1.0) x 
(2.1.0)12 

p(1)=-0.4896 0.5015 -9.5153 0.00000000 
 

0.1328 
 

38.5386 
 

255.2229 
 

244.2445 PS(1) = - 0.6205 0.0562 -11.0509 0.00000000 

PS(2)=-0.3515 0.562 -6.2582 0.00000000 

2 (0.1.2) x 
(0.1.1)12 

q(1)=0.8351 0.0579 14.4330 0.00000000 
 

0.0910 
 

27.3757 
 

157.3767 
 

146.3983 q(2)=0.0440 0.0580 0.7589 0.44855186 

QS(1)=0.8412 0.0412 20.4062 0.00000000 
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Table 5. Fitted Models for Tb 

S/NO 
SUGGESTED 

MODELS 
IDENTIFIED 

PARAMETER 
ESTIMATES 

STD. 
ERROR t-RATIO APPROX. 

PROBABILITY 
RESIDUAL 
VARIANCE SES SBC AIC 

1 (1.1.1) x 
(2.1.0)12 

p(1)= 0.0791 0.0686 1.1533 0.24974216 

 
0.1066 

 
31.0167 

 
198.5745 

 
183.9366 

q(1)= 0.8782 0.0340 25.8220 0.00000000 

PS(1)= 0.6305 0.0560 -11.2668 0.00000000 

PS(2)= 0.3744 0.0562 -6.6604 0.00000000 

2 (1.1.0) x 
(2.1.1)12 

p(1)= 0.5088 0.0502 -10.1346 0.00000000 

 
0.1151 

 
34.1610 

 
226.4224 

 
211.7845 

PS(1)= 0.00162 0.0819 -0.1980 0.84315376 

PS(2)= 0.00775 0.0733 -1.0568 0.29152107 

QS(1)= 0.7911 0.0655 12.0861 0.00000000 

3 (1.0.1) x 
(1.1.2)12 

p(1)= 9050 0.0707 12.6767 0.00000000 

 
 

0.0885 

 
 

26.3022 
 
 

 
 

156.4980 

 
 

138.1832 
 

q(1)= 8000 0.0974 8.0224 0.00000000 

PS(1)= 4092 0.6947 -1.9695 0.03331386 

QS(1)= 4971 0.6722 2.1968 0.04408960 

QS(2)= 4940 0.5494 2.0887 0.02771946 

4 (1.1.1) x 
(1.1.2)12 

p(1)= 0.0598 0.0662 0.9030 0.36730017 

 
 

0.09131 

 
 

27.3049 

 
 

167.8703 

 
 

149.5729 

q(1)= 0.8919 0.0317 28.1409 0.00000000 

PS(1)= 0.6465 0.7583 -0.8526 0.39462901 

QS(1)= 0.1658 0.7368 0.2250 0.82214006 

QS(2)= 0.5799 0.6071 0.95653 0.34025935 

Table 6. Forecasts; Model: (1,0,1)(1,1,2) Seasonal lag: 12 (Input: TB, Start of Origin: 300) 

  Lower upper 

 Forecast 90.0000% 90.0000% 

1 35.42759 21.86458 57.40401 

2 30.09353 18.52340 48.89063 

3 28.57741 17.55221 46.52797 

4 11.88015 7.28392 19.37665 

5 10.51909 6.44016 17.18146 

6 8.11058 4.95975 13.26308 

7 13.57904 8.29583 22.22687 

8 16.53476 10.09363 27.08620 

9 18.25258 11.13512 29.91943 

10 26.47313 16.14166 43.41727 

11 21.65110 13.19581 35.52416 

12 23.98559 14.61349 39.36833 

Table 7. Model Fit for Passengers Traffic 

R-squared .876 

RMSE 31189.172 

MAPE 27.479 

MaxAPE 367.841 

MAE 20108.413 

MaxAE 151750.245 

Normalized BIC 20.791 

Table 8. Model Fit for Tuberculosis Cases 

R-squared 0.614 

RMSE 6.785 

MAPE 26.522 

MaxAPE 253.811 

MAE 5.288 

MaxAE 24.727 

Normalized BIC 3.943 
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APPENDIX 2 

 
Figure 1. The plot of the residual ACF and PACF of tuberculosis cases 

 
Figure 2. The plot of the residual ACF and PACF of passenger’s traffic 

 
Figure 3. The plot of original series, fit and the forecast of tuberculosis cases 
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Figure 4. The plot of original series, fit and the forecast of passenger’s traffic 

 
 
 


