
American Journal of Applied Mathematics and Statistics, 2016, Vol. 4, No. 4, 99-107 
Available online at http://pubs.sciepub.com/ajams/4/4/1 
©Science and Education Publishing 
DOI:10.12691/ajams-4-4-1 

Statistical Model of Polydisperse Fuel Spray in Three 
Dimensional Space 

Ophir Nave* 

Department of Mathematics, Ben-Gurion University of the Negev (BGU), PO Box 653 Beer-Sheva, 84105, Israel 
*Corresponding author: naveof@cs.bgu.ac.il 
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1. Introduction 
When modeling the polydisperse spray one can employ 

the discrete droplet model. One method is to solve the 
governing equations of motion for turbulent carrier gas in 
an Eulerian scheme, and then to integrate Lagrangian 
equations of motion for liquid droplets along true path 
lines [1,2,3,4]. The advantages of this method are the 
ability to efficiently discretize the liquid phase (i.e., spray) 
into groups of identical droplets, each containing droplets 
of a given radius, and the fact that the equations for the 
dispersed liquid phase are more naturally written down in 
a Lagrangian manner. Another method is the well known 
Eulerian-Eulerian scheme. This method has been used by 
many researchers such as [5,6,7]. This approach is useful 
in the case when the flow contains many collisions 
between the droplets. In addition, when applying this 
method, one should assume a local equilibrium between 
the two phases. Another useful method is the stochastic 
approach. The spray is described by the distribution 
function (or density function) ( )jf r x v t drdxdv, , ,

    , which 
is the probable number of particles of chemical 
composition j  in the radius range dr  about r  located in 
the spatial range dx  about x  with velocities in the range 
dv  about v  at time t , [8].  

When formulating the model, the source terms include 
and describe effects of droplets breakup and the effects on 
the gas phase. In order to evaluate the velocity, the rate 
change of velocity, the radius, and the energy, one should 
write the governing equations in the Lagrangian forms. An 
Eulerian conservation equation is then written for the 
number density jf  in each considered range j , 

integrating over the radius range and taking a delta-
function approach [9].  

In this paper we modeled the polydisperse spray using 
the moments of the droplet-size-number distribution. The 
advantages of this approach are as follows: 1. the number 
of equations that must be solved is significantly less 
compared to other methods reviewed above, 2. using the 
moments means that the polydisperse spray is dealt with 
in terms of average quantities which allows a smooth 
representation of the droplet-size at all points, rather than 
a discrete representation [10,11,12,13].  

2. Physical Assumptions and Conservation 
Equations 

The physical model describes the thermal ignition of 
polydisperse fuel spray in a two-dimensional laminar 
mixing layer. The parameters used to describe the 
distribution of droplet sizes are the moments of the droplet 
size distribution function which are allowed to vary in 
space and time. Droplet breakup, and droplet droplet collisions 

effects are ignored. The vaporization time ( )
2
0

3
Rl

v DA TA
t ρ

ρ=  

is used to define the length scales for the longitudinal and 
transverse coordinates x  and y . A Fickian description is 
used for the diffusion velocities of all species, with the 
binary diffusivity of species i  into the mixture  

iD ′  scaled 

with its air side value to give   
i i iAD D D′ ′= / . We 

assumed the power -law dependence iD Tσρ =  for the 
transport properties. The equation of state can be written 
in terms of the mass fraction of the fuel FY  in the form of 
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( )( )1 1 1F A FT Y W Wρ − − / = . For simplicity, the 
chemistry describing the thermal ignition process is an 
irreversible reaction between the Oxygen of the air and the 
fuel vapor in the form of 2 (1 )F sO s P Q+ → + +  where s  
and Q  are the mass of Oxygen consumed and the amount 
of heat released per unit mass of fuel burned respectively. 
Under the above assumptions, the gas phase 
dimensionless conservation equations are:  

 ( ) 1
x

rwρ α∗ ∗∗
∗∇ ⋅ = Λ ,




  (2.1) 
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and the conservation equations for the liquid phase are:  

 ( )3 1dx
r rw∗ ∗∗

∗∇ ⋅ = −Λ ,




   (2.6) 
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where ( )1 T TB
lv

T lnσ −∗  Λ = +  
.  

The initial conditions at 0x =  and 0y >  are:  

 1 1 1 0oF Yu Y T∗∗ ∗ ∗− = = − = − = ,  (2.10) 

and  

 
0

s F B d B

ood s d s

u u Y T T T T

YYu u v

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗∗∗ ∗ ∗

− = = − = −

= = = = − = ,
 (2.11) 

for 0y < , and the boundary condition for 0x >  is given 
by  

 1 1 1 0oF Yu Y T∗∗ ∗ ∗− = = − = − = ,  (2.12) 

as y →∞ , and  

 0oos F BsYYu u Y T T v∗∗∗ ∗ ∗ ∗ ∗ ∗− = = − = − = = ,  (2.13) 

for y → −∞ .  
The initial distribution is taken to be Gaussian.  
The dimensionless variables are as follows:  
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The following notations are used for the above model: 
B  universal gas constant, c  specific heat capacity, D  
thermal diffusivity, E  activation energy, vL  latent heat of 
vaporization, Le  Lewis number, n  dimensionless 
droplet-number density, P  probability density function, 
Pr  Prandtl number, Q  heat of combustion, R  droplet 
radius, r  dimensionless droplet radius, S  mass of air 
consumed per unit mass of fuel burned, T  gas 
temperature, u  gas velocity (longitudinal component), U  
mean stream velocity, v  gas velocity (transverse 
component), w  =(u, v), x  longitudinal coordinate, y  
transverse coordinate, Y  mass fraction, W  molecular 

mass, x =(x, y), ( ) ( )f R g ⋅ =
0

( ) ( ) ( )f R P x R g dR
∞

, ⋅∫
  or 

0
( ) ( ) ( )f r P x r g dr

∞
, ⋅∫





  in dimensionless terms, ∇  two 

dimensional gradient, ρ density, α  the ratio of mass of 
liquid per unit volume to the gas density

34
0 03 d l AR nα π ρ ρ= /  (dimensionless), σ  relate to a 

power law. Subscripts: 0  initial, A  air, B  boiling, d  
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droplet, l  liquid, F  Fuel, o  oxygen, p  under constant 
pressure, s  spray.  

3. Homotopy Analysis Method-HAM 
1. Preliminaries 

The application of the HAM to a system of non linear 
partial differential equations is as follows [15,16]: Let  

 1 2[ ( ) ( ) ( )] 1i nN u r u r u r i n, , ..., , = ,..., ,
    (3.1) 

be a system of differential equations with the initial 
conditions:  

 0(0) 1i iu u i n= , = ,..., ,


 (3.2) 

where iN  are nonlinear operators, r  independent 
variables and iu  are unknown functions. The zero-order 
deformation equations for 1i n= ,...,  are:  

 0
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where [0 1]p∈ ,  is the embedding parameter, i  are the 
non zero auxiliary parameters, 0iH ≠  are non zero 
auxiliary functions, iL  are the auxiliary linear operators 
and 0 ( )iu r  are the initial conditions of ( )iu r . According to 
(3.3), when 0p =  and 1p = , it holds 0( 0) ( )i ir u rϕ ; =

   
and ( 1) ( )i ir u rϕ ; =

   1i n= ,..., . Which means that when p  
varies from 0  to 1 , the solution ( )i r pϕ ;

  varies from the 
initial condition 0 ( )iu r  to the solution ( )iu r . Expanding 

( )i r pϕ ;
  to a power series with respect to the small 

parameter p ,  
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When 1p =  the series in (3.5) convergence to the solution 
and we have:  
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In order to obtain a series solution of HAM, define the 
vector:  

 0 1( ) { ( ) ( ) ( )} 1im i i inr u r u r u r i nu = , ,..., , = ,..., .
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Differentiating Equation (3.3) m -times with respect to 
the embedding parameter p , setting 0p =  and finally 
dividing the terms by m! , we obtain the m th-order 
deformation equations in the form of:  
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and mχ  is the unit step function. Applying the inverse 

operator 1( )iL− ⋅  on both sides of Equation (3.8), we obtain  
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The solution of the m th-order deformation can be 
expressed according to Equation (3.10) which can be 
solved by symbolic software such as Mathematica 8 0. , 
Maple, Matlab and so on. When one substitutes the 

( )imu r  for 1m ≥ , then the M -order series is  
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and when M →∞ , then one can obtain an accurate 
approximation of the original system (3.1).  
2. Application 

In order to apply the HAM to the model (2.1)-(2.9) (for 
convenience we ignore the asterisk from the model) let us 
define the following series:  
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We choose the linear operators iL  as  

 [ ] 1 9i i x iL iϕ ϕ= ∇ , = ,..., ,  (3.13) 

with the property ( ) 0i iL c =  ( 1 9)i = ,..., , where ic  
( 1 9)i = ,...,  are integral constants. The non linear operators 

iN  ( 1 9i = ,..., ) of the considered system are defined as:  

 ( )1 1 9 1 2 6[ ] ( ) 1xN ϕ ϕ ρ ϕ ϕ α ϕ,..., = ∇ ⋅ , − Λ ,

  (3.14) 
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Using the above non linear operators, and using the 
assumption that 1iH =  ( 1 9)i = ,..., , we construct the m -
order deformation equations in the form of:  
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The expressions imR  in Equation (3.23) are as follows:  
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By using the software Matlab one can obtain the 
solutions using Equation (3.10) for each function in 
Equation (3.24) and finally one should substitute the 
appropriate expressions in Equations (3.11).  

4. Analysis and Results 
In our analysis we compared between two polydisperse 

fuel spray: Heptane and Methanol. The values of the 
 

dimensionless parameters are [14]: 1. Heptane : 39 5q = . , 
0 34vl = . , 0 37BT = . , 2 2c = . , 0 29A FW W/ = . , 

2 6FLe = . , 15 2S = . , and 2. Methanol : 18 6q = . , 
1 09vl = . , 0 34BT = . , 2 5c = . , 0 91A FW W/ = . , 

1 2FLe = . , 6 5S = . .  
The air-side temperature is assumed to be 1000AT K= . 

The rest of the parameters are: 1α = , 0 7Pr = . , 10β =  
and S BT T= . 

We have implemented the numerical method for PDE 
using the software MATLAB. Our results are presented in 
Figures (4.1)-(4.3) for different contour lines in the x y−  
plane. In all cases, the polydisperse spray mixes with the 
hot air without any appreciable chemical reaction. The 
vaporization process of the different size droplets is 
caused by coflowing of hot air stream. The fuel vapor 
diffuses into the air stream, and then it starts to react with 
the oxygen as it reaches the high temperature boundary, 
which is far away from the polydisperse spray. In Figure (4.1) 
we plot the temperatures T  and dT . The air stream 
temperature is decreased at the beginning of the process 
(when the spray and the hot air are mixed) because the 
different initial values for both fuels (heptane and 
methanol) (Figures (4.1)-(a) and (4.1)-(b)). The methanol 
decreases more slowly. On the other hand, the droplets 
temperature dT  is increased because of the hot air  
(Figure (4.1)). The droplets temperature of theheptane is 
increase more faster in compare to increases at a faster 
rate, in comparison to the methanol (Figure (4.1)-(c) and 
Figure (4.1)-(d)) respectively. The three dimensional 
surfaces of the gas and droplets temperature are presented 
in Figure (4.4). 

 
Figure (4.1). Solution profiles of the temperature for heptane and methanol 
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Figure (4.2). Solution profiles of the velocity in x and y directions for heptane and methanol 

 
Figure (4.3). Solution profiles of the mass fraction of oxygen and fuel 

The droplets velocity du  and dv  in x  and y  
directions respectively start from the initial conditions and 
then decrease because of the interaction of the droplets 
with the hot air (friction). The velocity in dv  of the 
methanol is the first to decrease (Figure (4.2)-(b)) as 
compared to the heptane (Figure (4.2)-(a)). The velocity 

du  of both the heptane and methanol decreases at a 
slower rate, in comparison to the dv . These results are 
compatible with the three dimensional surfaces presented 
in Figures (4.5). The droplet velocity dv  is decreases 
close to the initial conditions. 
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Figure (4.4). Solution profiles of the droplets and gas temperature in three-dimensional space. The upper surface is the solution of the model Equations 
(2.1)-(2.9) obtained by applying numerical simulations, and the lower surface is the solution of the model (2.1)-(2.9) obtained by applying the homotopy 
analysis method (HAM)  

 
Figure (4.5). Solution profiles of the droplets velocity in three-dimensional space. The upper surface is the solution of the model Equations (2.1)-(2.9) 
obtained by applying numerical simulations, and the lower surface is the solution of the model (2.1)-(2.9) obtained by applying the homotopy analysis 
method (HAM)  

The solution profiles of the mass fraction of oxygen and 
fuel and the differences between the heptane and methanol 
are shown in Figures (4.3). The coordinate x  of the 
ignition is (0 4 0 6)x∈ . − .  and this result is compatible 

with the solution profiles of the temperature, velocity and 
mass fraction (Figures (4.1)-(4.3)). 

In our analysis we assumed that the probability density 
function RP  does not change in time due to the scales 
selected [14] (short period of ignition). 
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Figure (4.6). Solution profiles of the mass fraction of Oxygen and Fuel in three-dimensional space. The upper surface is the solution of the model 
Equations (2.1)-(2.9) obtained by applying numerical simulations, and the lower surface is the solution of the model (2.1)-(2.9) obtained by applying the 
homotopy analysis method (HAM)}  

In our Analysis, in addition to numerical simulations, 
we applied the homotopy analysis method. In Figures 
(4.4)-(4.6) the upper surfaces are the solution of the model 
given in Equations (2.1)-(2.9) obtained by applying 
numerical simulations, and the lower surfaces are the 
solution of the model given in Equations (2.1)-(2.9) 
obtained by applying the homotopy analysis method 
(HAM). As can be seen by these figures, the solutions that 
are obtained by the HAM series are close to the numerical 
solutions. The great freedom and flexibility to choose the 
auxiliary convergence control parameter, the auxiliary 
linear operators and the non zero auxiliary functions 
increase the possibility of finding satisfactory series 
solutions which are very close to the numerical ones. To 
summarize, the homotopy analysis method (HAM) is an 
analytical approach for obtaining convergent series 
solutions of strongly nonlinear problems. It is also a 
method which economizes the computer processing work 
time. In general it is impossible to solve high-order 
deformation equations quickly while maintaining an 
approximation at a high enough order without a high-
performance computer. Furthermore, it is also impossible 
to choose a proper value of the convergence- control 
parameter without the use of symbolic computers software.  

5. Conclusions 
In this study, we investigated the problem of the effects 

of droplets dispersion dynamics on ignition of 
polydisperse spray in turbulent mixing layers using 
probability density function. In our analysis we compared 
two polydisperse fuel sprays: Heptane and Methanol.  

We applied an analytic technique, known as the 
homotopy analysis method (HAM). The major advantage 

of this method is that there is no need for the emergence of 
a small parameter in the model. The artificial parameter 
that this method utilizes provides a method for controlling 
the convergence region and rate of convergence of the 
series solutions.  

There is a high degree of agreement between our 
theoretical results and the numerical results of the 
technique.  

This present research shows the validity and the 
enormous potential of the homotopy analysis method for 
nonlinear problems in science and engineering. 
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Nomenclature 
B   universal gas constant 
c   specific heat capacity 
D   thermal diffusivity 
E   activation energy 

vL   latent heat of vaporization 

eL   Lewis number 
n  dimensionless droplet-number density 
P   probability density function 

rP   Prandtl number 
Q   heat of combustion 
R   droplet radius 
r   dimensionless droplet radius 
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S  mass of air consumed per unit mass of 
fuel burned 

T   gas temperature 
u   gas velocity (longitudinal component) 
U   mean stream velocity 
v   gas velocity (transverse component) 
w    =(u, v) 
x    longitudinal coordinate 
y    transverse coordinate 
Y    mass fraction 
W    molecular mass 
x    =(x, y) 
.   scalar product 

( ) ( )f R g ⋅  ( ) ( ) ( )
0

,f R P x R g dR
∞

= ⋅∫


 or 

( ) ( ) ( )
0

,f R P x r g dr
∞

⋅∫



  in 

dimensionless terms 

Greek Symbols 
∇    two dimensional gradient 
ρ    density 
α  the ratio of mass of liquid per 

unit volume to the gas density 
3
0 0

4 /
3 d l AR nα π ρ ρ=

(dimensionless) 
σ    relate to a power law 

Subscripts 
0    initial 
A    air 
B    boiling 
d    droplet 
l    liquid 
F    Fuel 
o    oxygen 
p    under constant pressure 
s    spray 
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