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Abstract The truncated distributions has been widely studied, primarily in life-testing and reliability analysis.
Most work has assumed an upper bound on the support of the random variable, i.e. the space of the distribution is (0,
d). We consider a doubly-truncated Fréchet random variable restricted by both a lower (c) and upper (d) truncation
point. We provide forms for the density, cumulative distribution function (CDF), hazard function, characteristic
function, rth raw moment, mean, mode, median, variance, skewness, kurtosis, Shannon entropy function, relative
entropy and quantile function. We also consider the generating issues. This paper deals also with the determination
of R = P[Y < X] when X and Y are two independent doubly truncated Fréchet distributions (DTFD) with different
scale parameters, different shape parameters but the same truncations parameters. Different methods to estimate
doubly truncated Fréchet distribution parameters are studied, Maximum Likelihood estimator, Moments estimator,
Percentile estimator, least square estimator and weighted least square estimator. An empirical study is conducted to
compare among these methods.
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1. Introduction

Fréchet distribution was introduced by a French
mathematician named Maurice Fréchet (1878-1973) who
had identified before one possible limit distribution for the
largest order statistic in 1927. It is worth mentioning the
link between Pareto and Fréchet: The limiting distribution
of the maximum of independent random variables having
Pareto distribution is Fréchet which suggests that when all
firms draw from Pareto the distribution of the best can be
represented as Fréchet.

The Fréchet distribution has been shown to be useful
for modeling and analysis of several extreme events
ranging from accelerated life testing to earthquakes, floods,
rain fall, sea currents and wind speeds. Applications of the
Fréchet distribution in various fields given in Harlow [3]
showed that it is an important distribution for modeling
the statistical behavior of materials properties for a variety
of engineering applications. Morales [6] used an upper
truncated Fréchet distribution for Estimation of Max-
Stable Processes Using Monte Carlo Methods and then
applied the theoretical and empirical aspects in Financial
Risk Assessment. Nadarajah and Kotz [8] discussed the
sociological models based on Fréchet random variables.
Further, Zaharim et al. [11] applied Fréchet distribution
for analyzing the wind speed data. Mubarak [7] studied
the Fréchet progressive type-ll censored data with
binomial removals. The Fréchet distribution is a special
case of the generalized extreme value distribution. This
type-l1l extreme value distribution (Fréchet) case is
equivalent to taking the reciprocal of values from a
standard Weibull distribution. Pehlivan [9] looked at the

German market of manufacturing imports for 1990. He
considered two extreme cases, namely Belgium and US,
which are the countries with the worst and best
productivity distributions, respectively. He found that the

truncated Fréchet distribution with dgg =0.4036 and

dys = 0.2864 does not fit very well the problem under his
consideration. Abid and Hassan [2] derived the failure rate
model of Marshall-Olkin Extended Uniform distribution
and upper truncated Fréchet (a,b,d).

The probability density function (PDF) and the

cumulative distribution function (CDF) for the Fréchet
random variable X are respectively,

b
f(x)= abx ®De= " 0 o x < oo, (1
-b
F(x)=e™ @)
Where a > 0 is the scale parameter and b > 0 is the shape
parameter.
The rth raw moment of X is,
r\_ Aribp( DT
E(X")-a r( - j 3)

After depth search in the scientific literature, we found
that there is no Reliable Studies related with doubly
truncated Fréchet distribution (DTFD) although the
importance of this distribution, so it is considered here.

In this paper we will refer to Fréchetdistribution by
F ~ Fr(a, b), which is mean that the random variable F
follow Fréchet distribution with parameters a and b.
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2. Properties of DTFD

We now consider DTFr(a,b,c,d) to be a doubly-

truncated version of X with lower truncation point, ¢, and
upper truncation point, d. Obviously, the probability
density function (PDF) and the cumulative distribution
function (CDF) for the doubly-truncated Fréchet random
variable X are respectively,

-b
~ ab Xf(b+1) efa X

g(x) - —b
e2d " ¢

c<x<d (@))
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where k =¢ e

Also, the reliability function and hazard rate function of
X are respectively,

-b -b
-ad —-ax
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k
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The rth raw moment of X can be obtained as,
1.d
E(Xr):EJ‘C x" g(x) dx
-b
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- %Ld ab x" 0+ g2 xP dx.
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Where 1“(u,v):'[;ot“‘1e‘t dt, is the upper incomplete

gamma function.
Then, the mean and variance of DTFr(a,b,c,d)

random variable X are respectively,
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The mode of X is obtained as follows,
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Also, the median (M, ) of X is obtained as follows,
b b -b b
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The Pearson mode skewness sk = (z—Mo)/o is,
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The excess kurtosis Ku =z / o*-3 | where

tr =E(X—p)"is



ku =

e

American Journal of Applied Mathematics and Statistics 11

(a“’b /k){l"(l—:: ,ad

Jelepre)

ks{r(l_

(o]

To obtain the guantile function, G(x)=
-b -b
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So by using the inverse transform method, one can
generate the random variable X as follows,

“1/b
_ b
X = [—1 Ln(ea R kD
a

Where U is a uniformly distributed random variable in the
interval [0,1].
The characteristic function is,

16
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3. Shannon entropy and Relative Entropy

An entropy of a random variable X is a measure of
variation of the uncertainty. The

Shannon entropy of DTFr(a,b,c,d) random variable
X can be found as follows,

H=E(-Ln(g(x))

=a—bLn(a—b] Jd[(b +1)Ln (x)] (04D e_ax—b
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Then the entropy function for DTFr(a,b,c,d)

random variable is,
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The relative entropy (or the Kullback-Leibler divergence)
is a measure of the difference between two probability

distributions G and G . It is not symmetric in G and

G . In applications, G typically represents the "true"
distribution of data, observations, or a precisely calculated

theoretical distribution, while G
theory, model, description, or

typically represents a
approximation  of

G .Specifically, the Kullback-Leibler divergence of G
from G, denoted Dyy( G||G* ), is a measure of the
information gained when one revises ones beliefs from the
prior probability distribution G" to the posterior
probability distribution G . More exactly, it is the amount

of information that is lost when G~ is used to
approximate G ,defined operationally as the expected
extra number of bits required to code samples from G

using a code optimized for G" rather than the code

optimized for G.
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By using the same previous arguments of integrations,
one can directly write,
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4. Stress-Strength Reliability

—a

(19)

Inferences about R = P[Y < X], where X and Y are two
independent random variables, is very common in the
reliability literature. For example, if X is the strength of a
component which is subject to a stress Y, then R is a
measure of system performance and arises in the context
of mechanical reliability of a system. The system fails if
and only if at any time the applied stress is greater than its
strength.

Let Y and X be the stress and the strength random
variables, independent of each other, follow respectively
DTFr(a,b,c,d) and DTFr(a, B, c,d), then,

d
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5. Parameters Estimation of DTFréchet
Distribution

The main aim of this section is to study different
estimators of the unknown parameters of a DTFréchet

distribution. Here, we consider ¢ =X, and d= X(n) @ a

most common estimators for truncation parameters ¢ and
d respectively, then we use five methods of estimation to
explore about the parameters a and b .
(1) Maximum Likelihood estimators(MLE).

If x,x,..,x, IS a random sample
DTFr(a,b,¢,d), then the log-likelihood function is

from

L=n Ln(ab)—(b+1)i|-”(xi)
i=1

b b
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The normal equations become,
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After equating each one of the above equations with

zero and then using the numerical solution to solve them
simultaneously, we obtain &y g and by g as ML

estimators of a and b respectively.
(2) The exact moments estimators (EME).

The method of moments is a technique for constructing
estimators of the parameters that is based on matching the
sample moments with the corresponding distribution
moments.

Here we provide the method of moments estimators of
a and b parameters of a DTFréchet Distribution when
both are unknown. If X follows DTFr(a, b, ¢, d), then the
first two distribution moments are,

E(X)— K {F[l b aX(nb)j (1—— aX(l) )}
2/b 2 2
E(XZ) = ak —{F(l b aX(nb)j (1—— ax(l) j}

—WUDY R
i=1
(s=12) with corresponding theoretical (distribution)
moments above, and using the numerical solution for the
resulting equations simultaneously, we obtain agye and

By equating sample moments

beme as EM estimators of a and b respectively.
(3) The approximate moments estimators (AME).

If X follows DTFr(a,b,é,d), then from (11) one can
write,

a=_L +1}b . (21)
bM,
By substituting (21) in (12), we get,
Ln(2) ~1/b
1/b b+l _p
exp| ————x
" [ b—?bJ [ o5 (“)J 2
bMj —Ln

b+1 _p
—exp| — le/b X(l)

then, after calculating the sample mode m, and the sample
median mgyand substituting their values in (22), one can

get the AME of b, say, bayr by solving iteratively (22).
Once we estimate b, we can use (21) to obtain the AME of
a, say, Gy -
(4) Estimators based on percentiles (PE).

Kao in [4] originally explored this method by using the
graphical approximation to the best linear unbiased
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estimators. The estimators can be obtained by fitting a
straight line to the theoretical points obtained from the
distribution function and the sample percentile points. In
the case of a DTFréchet distribution, it is possible to use
the same concept to obtain the estimators of a and b based
on percentiles because of the structure of its distribution
function . Since G (x) defined in (5), therefore,

1/b

—a
X =

(23)
-a x_b
Lnje @ +G(x)k

If p; denotes some estimate of G(x(y; a, b, ¢, d) then,
the estimate of a and b can be obtained by minimizing,

1b 72

X(i) —| —a/ Ln eia X(l) +k pi (24)

With respect to a and b. (24) is a nonlinear function of
a and b. It is possible to use some nonlinear regression
techniques to estimate a and bsimultaneously. Actually, it
is possible to use several p;’s as estimators of (x(;) .

p; = i/(n+1)) is the most used estimator of G(x;))

since it is equal to E (G(x(i))). We have also used this p;

here. For some other choices of p;’s, see Mann, Schafer
and Singpurwalla [5].
(5) Least squares (LSE) and Weighted least squares
(WLSE) estimators

This method was originally suggested by Swain,
Venkatraman and Wilson (1988) to estimate the
parameters of Beta distribution. Suppose x;, x5, ..., x, IS a
random sample of size n from a distribution function G (.)
and suppose x;(i =1,2,..,n) denotes the ordered

sample. This method uses the distribution of G (x;)). For a

sample of size n, we have [5], E (G(X(i))) = ﬁ

Var (G(x))) = j(n- j +1)/((n +1)? (n+2))
and

Cov[(G(x(i))),(G(X(k)))}
= i(n—k+D/((n+1)* (1+2)) for j <k.

So, one can obtain the LS estimators by minimizing,
TGy —j/(n+ 1))” with respect to the unknown

parameters. Therefore in the case of DTFréchet
distribution, the

least squares estimators of a and b, say d,gg and bz
respectively, can be obtained by minimizing,

2
k—j/(n+1)

n

2

=1

b
—a x| b
e ) _gac (25)

with respect to a and b.

The weighted least squares estimators of a and b, say
dyse and bysp respectively, can be obtained by
minimizing,

—b 2

—axt b
e ) e | Ao+ | (26)

n
2w
j=1

with respect to a and b, where

wj =1/Var (F(yg)))=(n+1)* (n+2)/(j(n- j +D).

Table 1. Empirical MSE to estimate the DTFréchet distribution parameters a and b

case 1 2 3 4 5
parameters a b a b a b a b a b
Sample | The 0.6 1 1 0.6 0.9 0.9 12 03 03 12
size | method
MLE | 4.015163 | 7.619172 |3.86419239 | 6.68765466 | 3.91558647 | 7.43608095 | 3.65540394 | 5.28716598 | 4.98522576 | 7.75408182
EME | 5.020559 | 9.321601 |4.85674056 | 8.39329569 | 4.9145589 | 9.13850985 | 4.63189146 | 6.98959488 | 5.98419819 | 9.45329859
10 AME | 5.055893 | 9.478996 |4.90813464 | 8.52499302 | 4.96916511 | 9.28947996 | 4.70577045 | 7.14056499 | 6.04522866 | 9.62354148
PE 3.154312 | 7.55493 |3.00655368 | 6.58807863 | 3.06437202 | 7.34292918 | 2.76885606 | 5.19722634 | 4.13401131 | 7.66735431
LSE | 4.898498 | 9.24451 |4.72825536 | 8.27444688 | 4.79249796 | 9.02287317 | 4.50983052 | 6.88038246 | 5.86213725| 9.36014682
WLSE | 4.541952 | 8.637418 |4.37170893 | 7.65771792 | 4.44237579 | 8.42541699 | 4.16934474 | 6.27650202 | 5.51843934 | 8.74662999
MLE |2.9372937|6.9996999 | 2.7662766 | 6.1086108 | 2.8352835 | 6.8016801 | 2.5652565 | 4.7944794 | 3.8343834 | 7.0957095
EME |4.6084608 | 8.6618661 | 4.4434443 | 7.7557755 | 4.5064506 | 8.4728472 | 4.2364236 | 6.4656465 | 5.5085508 | 8.7698769
20 AME |4.6654665 | 8.7848784 | 4.5244524 | 7.8667866 | 4.5634563 | 8.5988598 | 4.3054305 | 6.5826582 | 5.5655565 | 8.8898889
PE |2.8712871|6.6666666| 2.70027 | 5.7635763 | 2.7782778 | 6.4866486 | 2.5412541 | 4.4764476 | 3.7893789 | 6.7956795
LSE |4.5364536 | 8.5088508 | 4.3954395 | 7.5967596 | 4.4374437 | 8.3228322 | 4.1884188 | 6.30063 | 5.4365436 | 8.6258625
WLSE | 4.2394239 | 7.9897989 | 4.0894089 | 7.0837083 | 4.1374137 | 7.8127812 | 3.8853885 | 5.7965796 | 5.1425142 | 8.1128112
MLE |[2.6299188|6.7440492 | 2.4650064 | 5.8847688 | 2.53155 | 6.5733504 | 2.2827348 | 4.6349064 | 3.4776264 6.87135
EME |4.4092368 | 8.2398336 | 4.2703632 | 7.3545144 | 4.3224408 | 8.0488824 | 4.0562664 | 6.1133316 5.28009 8.3497752
50 AME |4.4757804 | 8.3960664 | 4.3282272 | 7.5425724 | 4.3803048 | 8.2282608 | 4.1141304 | 6.29271 | 5.3321676 | 8.5291536
PE 2.7311808 | 6.3274284 | 2.5836276 | 5.4450024 | 2.6357052 | 6.1451568 | 2.3753172 | 4.2182856 | 3.5991408 6.43737
LSE |4.1285964 | 7.7740284 | 3.9868296 | 6.8887092 | 4.0389072 | 7.5859704 | 3.8016648 | 5.6590992 | 5.0110224 | 7.8810768
WLSE | 4.0620528 | 7.66698 | 3.9116064 | 6.8076996 | 3.9723636 | 7.4818152 | 3.7293348 | 5.5289052 | 4.9300128 | 7.7798148
MLE 1.3095 3.4545 1.236 3.003 1.2585 3.3585 1.1265 2.3565 1.7595 3.513
EME 2.2695 4.149 2.199 3.7005 2.2185 4.0515 2.0985 3.048 2.7195 4.2045
100 AME 2.3025 4.1445 2.226 3.7035 2.3415 4.0485 2.124 3.0495 2.757 4.206
PE 1.389 3.111 1.317 2.658 1.3485 3.021 1.2105 2.0175 1.836 3.171
LSE 2.1075 4.0005 2.0325 3.549 2.058 3.9015 1.923 2.898 2.5635 4.053
WLSE 2.0865 3.954 2.019 3.501 2.0385 3.8535 1.914 2.883 2.5485 4.0095
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6. The Empirical Study and Discussions

We conduct extensive simulations to compare the
performances of the different methods, stated in section V,
for estimating unknown parameters of DTFréchet
distribution, mainly with respect to their mean square
errors (MSE) for different sample sizes and for different
parameters values.

The experiments are conducted according to run size
K =1000. We reported the results for n = 10 (small
sample), n =20 (moderate sample) and n = 50,100
(large sample) and for the following different values of a
and b,

a 0.6 1 0.9 1.2 0.3

b 1 0.6 0.9 0.3 1.2

The results are reported in Table 1. From the table, we

observe that,

1. The MSE's decrease as sample size increases in all
methods of estimation. It verifies the asymptotic
unbiasedness and consistency of all the estimators.

2. It can be said that the estimation of shape parameters
are more accurate for the smaller values of those
parameters whereas the estimation of scale
parameters are more accurate for the larger values of
those parameters .in other words, MSE's increase as
shape parameter increases whereas MSE's increase as
scale parameter decreases.

3. The performances of LSE, EME and AME are
according to their order.

4. The performances of EME's and AME's are close to
each other.

5. For small (n=10) sample size and moderate (n=20)
sample size, it is observed that PE works the best for
both of the two parameters whereas the second best
method is MLE.

6. For large (n=50, 100) sample size, it is observed that
MLE works the best from all other methods to
estimate the scale parameter whereas the second best
method is PE. PE works the best from all other
methods to estimate the shape parameter whereas the
second best method is MLE.

7. Summary and Conclusions

In view of the great importance of the truncated
distributions in statistical analysis, the doubly truncated

Fréchet distribution (DTFD) is considered here. For
DTFD we derived exact formulas of hazard function,
characteristic function, rth raw moment, mean, mode,
median, variance, skewness, kurtosis, Shannon entropy
function, relative entropy, quantile function and stress-
strength reliability. Different methods to estimate doubly
truncated Fréchet distribution parameters are studied,
Maximum Likelihood estimator, Moments estimator,
Percentile estimator, least square estimator and weighted
least square estimator. An empirical study was conducted
to compare among these methods. It seemed to us that the
Percentile estimator is the best one for small and moderate
samples and it is also the best to estimate the shape
parameter for large samples, whereas the maximum
likelihood estimator is the best to estimate the scale
parameter for large samples.
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