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Abstract In this paper the classical solution of a nonlocal boundary value problem for the equation of motion of a
homogeneous bar is investigated. Then using Fourier’s method stated problem reduced to an integral equation.
Further, exploiting the contracting mappings principle the existence and unigqueness of the classical solution for the

considered boundary value problem is proved
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1. Introduction

The non-local problems are the problems wherein
instead of giving the values of the solution or its
derivatives on the fixed part of the boundary, the relation
of these values with the values of the same functions on
another inner or boundary manifolds is given. Theory of
non-local boundary value problems is important in itself
as a section of general theory of boundary value problems
for partial equations and it is important as a section of
mathematics that has numerous applications in mechanics,
physics, biology and other natural science disciplines.

The more general time non-local conditions were
considered were considered on the papers of A.A.Kerefov,
J.Chabrowsky [8], V.V.Shelukhin [9], G.M.Liberman [10],
A.l.Kozhanov [11], and others.

Yu.A.Mitropolsky and B.I.Moiseenkov [1], J.M.T.
Thompson, H.B. Stewart [2], B.S.Bardin, S.D.Furta [3],
D.V.Kostin [4] and others have situated oscillation and
wave motions of an elastic bar on an elastic foundation.

The simplest non-linear model of motion of a
homogeneous bar is described by the equation

2 4 2
ow 9 W+ka W+aw+w3:0,
a? ot ax?
where w is bar’s deflection (after displacement of the
middle line points of an elastic bar along the axis x).
Note that the similar equation arises in the theory of
crystals [5].

2. Problem Statement and ITS Reduction
to an Integral Equation

For the equation [4]

Uge (X, 1) + Uy (6, 1) + BUyy (X, )

+au(x,t)+u3(x,t) =0

(1

in the domain Dy ={(x,t):0<x<1,0<t<T } we consi-
der a problem with ordinary periodic boundary conditions
uy (0,t) =uy (4,t), u(0,t) =u(Lt), u,(0,t) =u, (L),
Uy (0,8) = Uyy (L 1), Uyy (0,8) =y (1), (O <E<T),

and subject to the non-local boundary conditions
u(x,0)+ou(x,T) = ¢(x),

Ug (X,0) +8u; (X, T) = w(X) (3)

(0<x<])

where >0, >0, ¢ are the given numbers, moreover
B<da, ¢(X), w(x) are the given functions, u(x,t) is a

sought function.
Definition

Under the classic solution of problem (1)-(3) we
understand the function u(x,t), continuous in the closed
domain Dy together with its all derivatives involved in
equation (1), and satisfying all the conditions (1)-(3) in
ordinary sense.

It is known [11] that the system

1,cos 4%, sin 4X, ... ,COS 4y X ,SiN 4y X ...
isabasisinL,(0,1), where 4 =2kz (k=12,...).

Then it is obvious that each classical solution u(x,t) of
problem (1)-(3) has the form:

u(x,t) = i Uy (t) cos A x
e (4)
+ Ui ()sin 4 x (4 = 2kx),

k=1
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where
1 1

Upg (t) = ju(x,t)dx, Uy (1) = 2ju(x,t) COS A4 x dXx,
0 0

1
Upy (t) = 2ju(x,t)sinﬂkxdx(k =12,..).
0

Then, applying the formal scheme of the Fourier
method, from (1) and (3) we have:

Uio (1) + g (t) = Fp(u)(0 <t <T), (5)

U (0 + (A — BAE +)uy (1) = Fy (t;u)
(0<t<T:;i=12k=12..)

U0 (0) + Uy (T) = dg,
U10(0) + Ui (T) = w10,

Ui (0) + ouy (T) = i, Uik (0) + oujy (T) = wi,
(i=12k=12,..)

(6)

(7

®

where
1
Fio(t;u) = —Iu3(x,t)dx,
0
1 1
do = [#() .y = [w ()dx,
0 0
1
Fi (tu) = —2ju3(x,t)cosﬂkxdx,
0
1 1
b = 2j¢(x) cos A X dX, yyy = ij(x) C0S Ay X dx,
0 0

1
Foy (t;u) = —2J‘u3(x,t)sin A x dx,
0

1 1
dox =2 p(x)sin xdx,poy = 2[p(x)sin xdx.
0 0

2 2
It is clear that ﬂf—ﬂﬂf+a:(ﬂf—§j +a_ﬂT'

Let suppose that, /32 <4q . Then, by solving problem (5)-
(8) we find:
1
Upo (t) = ————{/Bo (cos fot + 5 cos Sy (T 1)) 1o

Bopo(T)
+(sin ot —o'sin By (T 1))y

0

t
+ﬂi0 g Fio(r:u)sin fo (- )dr,

Uik (t) =

T
_5.[ Fro (z;u)(sin By (T +t—7) +d'sin Sy (t —T))dr} )

253

1

B, (T)
+(sin Bt —&sin B (T =)y

{By (cos Syt + 5 cos S (T —1)) gy

T
_5J Fix (z;u)(sin By (T +t—7) + Jsin S (t—T))dr} (10)
0

t
+ = [RiEwsin A - dr (=12 k=12...)
B

where

B = — A2 +a, p (T) =1+ 25 cos BT + 52,

k=012,....

It is known that
1
2 (1) =
ik (1) Biprc(T)
+(sin St —8sin B (T — 1))

{By (cos Syt + o cos Sy (T —1)) gy

N
—5j Fi (z;U)(sin By (T +t—7) +5sin By (t—z'))dz}

0
1t
— | R (z;u)si t—7)d
+ﬁk'(|; k (z;u)sin g (t—7)dr
(i=12; k=12,..),

1m{ﬁo<—sinﬂot+5sinﬂoa )b

Ugp (1) =
£o

+(cos St + o cos By (T —t))wy

T
‘5.[ Fyo (z;u)(cos Gy (T +t—r)+5cosﬂ0(t—r))dr} an
0

t
+I Fig(z;u)cos Sy (t—7)dr,
0
1
P (T)
+ (o8 St +85¢os By (T —t))wix

U () = {By (=sin Bt +8sin B (T —1)) i

;
_5,[ F (7;u)(cos By (T +t—7) + 5 cos By (t —r))dr} (12)
0

t
+[ReEucos ft-ode (=12 k=12..),
0

ugp (t) = Fro(tiu) - fo {By (cos fyt
po(T)

+05sin By (T —1))dyp + (sin Sot = sin By (T =)y

)
~ 8 [ Fo(;u)(sin Bo (T +t=17) +5sin ﬂo(t—r))dr} (13)
0

t
~ Bo Fuo(ziu)sin fo (t—7)dr.
0
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Ul (1) = Fy (tu) — LKA (cos Bt
o (T)
+ 850 B (T~ )by + (sin At — 35in A (T ~ )i
(14)

.
& Ry (msu)(sin B (T +t—7) +5sin B (t—7))dr
0

t
—ﬂkjﬁk(r;u)sinﬂk(t—r)dr (i=12k=12,..).
0
After substituting the expressions uy (t) (k=0,1,2,...)
and uy, (t) (k=12,...) into (4), we get:

u(t) = m{ﬂo (oS gt +8 08 iy (T ~U)ho

+(sin Bt —J'sin Sy (T —t))y1g

;
— & Fyo(z3u)(sin By (T +t—7)+Ssin ﬂo(t—z'))dz}
0

t
+ﬁi0£ Fio(z;u)sin By (t—7)dz

& 1
+k§1{ﬂkpk )
+(sin St +osin B (T - 1))y,

[ B (cos fyt+ S cos B (T — 1)y

;
8 [ Py (z3u)(sin B (T +t—7)+ sin A (t —T))d‘[']
0

t
+ij Fu (z;u) sin Sy (t—r)dr}cosﬁkx
By

+|§{ﬂkpia)[ﬂk (cos Byt +ocos B (T —t)) oy

+(Sin figt+ 3sin fi (T )y

.
— 8 [ Py (zsu)(sin fic (T +t—7) + 5sin fi (¢ —r))dr} (15)
0

t
+if Fok (z;u)sin Sy (t —r)dr}sin A X.
Py

Thus, the solution of problems (1)-(3) is reduced to the
solution of integral equation (15) with respect to the
unknown function u(x,t) .

Similarly to [12], it is possible to prove the following
lemma.

Lemma
If u(x,t) is any classical solution of problem (1)-(3),

the functions

1

Upg (t) = j u(x, t)dx,
0

1
Uy (1) = ZIu(x,t) oS A4 x dx,
0

1
Ugy (t) = 2ju(x,t)sin Axdx(k =1,2,...).
0
satisfy the systems (9), (10) in [0,T].
From the lemma indicated above it follows that if

1 1
Ug (t) = ju(x,t)dx,ulk ®= 2ju(x,t) COS A x dx,
0 0

1
Ugy (1) = Zju(x,t)sin A xdx
0
(k=12,..)

is the solution of systems (9) , (10) then the function

u(x,t) = i Uy (t) cos A4y x

k=0
+ i Ugy (t)sin A x (A =2k7)
k=1

is the solution of (15).

From the above mentioned lemma follows
Corollary

Suppose that equation (15) has a unique solution. Then
the problem (1)-(3) may have at most one solution, i.e. of
the solution of problem (1)-(3) exists it is unique.

3. Existence and Uniqueness of the
Classical Solution

Denote by 825,T [13] the set of all functions u(x,t) of
the form

u(x,t) = i Uy () cos A X+ iu2k (t)sin 4 x (A4 =2kx),
k=0 k=1

defined on Dy , where each of the functions uy (t)
(k=01..), uy () (k=12,.) are continuous on
[0,T] and

B 12
J(u) =Juo (t)"C[O,T] J{Z (4 uge (t)"qo,T])zJ
k

=1

. 12
+ [Z (A Juz (t)"qo,T])zJ < Fo.
k=1

We define the norm in this set as follows:

||u(x,t)||B§;1T =J(u).

It is known that BST is a Banach space.

Now in the space B?VT we consider the operator

D(u) = i Dy, (t)cos 4 x+ i D,y (t)sin A X,
k=0 k=1

where
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Dy () = ———{y (cOS fot + 5605 fig (T 1)) g 2. y(0eC’0l, ¥y (0el0D, w0 =v),
S (f ) v'(0) =y'M), w"(0)=y"(1).
+(sin Bt —sin Sy (T =)y Then from (12) we have
T
-5 f Fio(z;u)(sin By (T +t—7) +Jsin /J’O(t—r))dr} |10 (t)||C[OT] (1+|6|)||¢(x)||L2 ©1)
0
t 1
2 [Ro(rusin fo(1- )i *Foro™) +|§|’"'”(X)"L2<°1>
0o
. ﬂl 1+ (T)|5|(1+|5|))( “ (x, t)H
i (t) = {B (cos St + 5 cos B (T —1)) i
B (T) . 12
+(sin Bt —sin B (T D)y {z (2 |y (t)"C[OT])ZJ
T k=1 ’
=8| Ry (mu)(sin B (T +t—z)+dsin fy (t—7))dz (5)
!; k k k } gﬁp(T)(l+|5|)”¢ (X)‘ L0
t "
+ij|:,k(r;u)sinﬂk(t—r)dr (=12 k=12..) +V3p M A+[3]) el "M, 0y a7
Bt +~3T (1+6] p (T) L+ |5]) &
Hence, we get: 3+18u'ux'uxx+3u2'uxxx .
”chO(t)Hc[O T] 2(Dr
Denote
1+|0 1+|0
ol (r)|{ﬁo( +16])|ro| + @+[) w0 [} A(r):GP(T)(1+|5|)”¢(5)(X)HLz(OD
. ,
T 2 +6o(T)(L+[8]) & v " (X))
+ﬂi0(1+ polm|5|(1+|5|))ﬁ[j||:10(r;u)|2er , 209
?-/2 (T) (1+ |5|)”¢(X)"L2 (0,2)
[é(ﬂf | (t)||C[O’T])2J +ﬂ—0(1+ s (T) |o] @+ |5]) ||l//(x)||L2 0

B(T) = V3T (L+ 6] p(T)(L+|6])e

1/2
< \/gp(T)(l+|5|)[Z (% | I)ZJ
] ) |5] @+[SPNT.

+i(1+ L
Bo po(T

12
+\/§p(T)(1+|5|)g(Z(ﬂf|yxik|)2J (16)  and rewrite (17) in the form:
k=1

+3T (1+]6] p(T)(1+]5) [oules < AM+B(T)

1/2
T x| 16U +18u-uy -uy, +3u?-u 18)
e [ XK |Rc@muh?de | ( " o a PYC
o k=1 3
e .
where Lo (Dr)
= -1 2 _ heorem
e (T)=sup p~(T) <1/ A+ 68° -25)), T
“ k ¥ | | Let conditions 1-2, 6 = £1, B <4« be fulfilled. Then
for sufficiently small values of T, problem (1)-(3) has a
sup( A2 ] B unique classical solution in the ball
[ e K =Kg(Julss < A(T)+1) of the space B3t .
,qk ﬂ R(" |||32‘T (TM)+1) p 2,7

Assume that the data of problem (1)-(3) satisfy the  Proof:
following conditions: In the space BS"T consider the equation

1L g()eC01, D) ely(01), ¢0)=4Q),

. N u=au, (19)
#0 =90, ¢O=¢"Q).,  FTO=67D  \yhere the operator @ is defined by the right hand side of
¢(4) (0) = ¢(4) ; equation (15). Consider the operator in the ball

K=K (Julgg <R=AT)+1) from B3
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Similarly, from (18) we get that for any u,u;,u, € Kg,
the following estimates are valid

||e1>u||B§,T < A(T)+28B(T)VTR®, (20)

||cI>u1—<I)u2||BgT s82R2\/'F||u1(x,t)—u2(x,t)||BgT .(21)

It follows from the estimates (20), (21) that for rather
small values of T the operator @ acts in the ball
K = KRg and is contractive. Therefore in the ball K =Ky

it has unique fixed point {u}, that is a unique solution of
equation (19). Moreover, integral equation (15) also has a
unique solution belonging to the ball K = Kpg.

The function u(x,t), as an element of the space BS,T :
is continuous and has continuous derivatives u, (X,t) ,
UXX(X,t), UXXX(X!t)! uXXXX(Xlt) on DT )

Now we’ll show that uy(x,t) is continuous in Dy .
Allowing for (10), from (6) we have

U () = m{ﬂk (cos pct+acos i (T —t))di
+(sin Bt = sin B (T =)y
T
5 [ R (zu)sin B (T +t=7) +5sin f (t—7))dr
0

t
= [ Ry (r)sin A (- 1)de + Ry ()
By
(=12 k=12,..).

Hence, we have:
w 12
{é(ﬂk "ui'i( (t)"C[O,T] )2 ]

1/2
<20+ f+a) p(T)(1+|5|)[Z(ﬂk5 |¢.k|)zj
k=1

o 1/2
+sp(r)(1+|5|){2(/1k3 Wi |)2J
k=1

1/2

T w
T (L+[8] p(T)A+|6)e j > (42 |Fi (msu))?d e
0

k=1

© 2 1/2
+z[z(zk G0l J -12),
k=1
or
- 12
(Z (A Jufi (t)"qo,T])zj
k=1

<2 ps a)(p(T)(1+|5|)H¢(5) (X)H

+p(T)(1+|5])e ||‘/’W(X)|||_2 01)
+T (1+]8] p(T)(A+|0)e

L2(04)

X 6u;°z +18U - Uy - Uyy +3u? “Uyyx

LZ(DT)j

+2 (i=12).

H3u2~uX

C[0,T] L (0.0)

It follows from the last relation that the function
Ug (X,t) is continuous in Dy .

It is easy to verify that equation (1) and conditions (2),
(3) are satisfied in the ordinary sense. So, u(x,t) is the

solution of the problem (1)-(3) in the ball K = Kg from
BS’T . Since equation (15) has a unique solution in the ball

K =Kg from BZS,T . By the above mentioned corollary
the problem (1)-(3) has a unique classical solution in the
ball K = Kg from B3 . The theorem is thus proved.

4. Conclusion

The following results have been obtained:

1. The existence of the solution of a nonlocal boundary
value problem for the equation of motion of a homo-
geneous bar is proved;

2. The uniqueness of the solution of a nonlocal boun-
dary value problem for the equation of motion of a
homogeneous bar is shown.
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