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Abstract
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1. Introduction

The aim main of this paper is to study the principle
concepts of the approximate controllability for
complicated classes of fractional order 0 <a <1
Riemann-Liouville type stochastic perturbed control
systems driven by mixed fractional Brownian motion The
following form is the system under our consideration,

"Dex(t) = —(A + AA)x(t) + Bu(t)
+F (t,x(t), foth(t, s,x(s))ds)

t dw

+G (t,x(t), Jo g(S,X(S))dW(s)) .
awg,

to()— te0,T] 0<a<1

dt
LDg_l x(V)li=o = %o

where, "D¢ the Riemann-Liouville fractional derivative of
order 0 < a < 1.—A is the infinitesimal generator of a
compact analytic semigroup of uniformly bounded linear
operators S(t),t = 0, —AA is a bounded linear operator in
a real separable Hilbert space X. Assume that 0 € p(A +
AA). The space Xg is a Hilbert such that X = D(A +
AAP) , 0<B<1, equipped with norm x|l =
[la +28)Px]|,.

x(®) € Cy_ ([0, T} L2 (2, X))

= {x(t); i x(t) € C ([0, T]; 12 (Q'XB))}

is a continuous at t € [0, T] } with the norm [Ixll¢,_, =
1

(sup (7 Ellx()lg)*)2. xo is Fo-measurable X- valued

te[0,T]

random variable independent of W and WH which defined
on a complete probability space (2, &, {&i};», P). The
control function u(.) € L? ; ([0,T]; U ), U is a Hilbert
space and the operator B from U into X is a bounded
linear operator such that there exists constant Ly > 0,
IBull < Lgllull. W = {Wq,t€[0,T]} is a standard
cylindrical Brownian motion defined on (,8,{&};5 ,P)
with values in a Hilbert space K. Let Q be a positive, self
—adjoint and trace class operator on K and let L, (K,X) be
the space of all Q -Hilbert-Schmidt operators acting
between K and X equipped with the Hilbert-Schmidt norm
Il 1l.,,- WH={ W}, t € [0,T] }is a Q-fractional Brownian

motion with Hurst index HE (%, 1) defined in a complete

probability space (Q, &{ & t};5 ,P ) with values in a
Hilbert space Y, such that Q is a positive ,self —adjoint and
trace class operator on Y and let LY (Y;X) be the space of
all Q -Hilbert-Schmidt operators acting between Y and X
equipped with the Hilbert-Schmidt norm ||-||L9 . The
functions F: [0,T] x Xg X Xg — X, h: [0,T] X [0,T] X X;
— Xg, G [0,T] X Xg X Xz —L,(K;X) and o: [0, T] -»
LY (Y, X) are continuous functions.

Approximate controllability of stochastic control
system driven by fractional Brownian motion has been
interested by many authors; Sakthivel [19] study for the
approximate controllability of impulsive stochastic
systems with fractional Brownian motion. Guendouzi and
Idrissi, [7] established and discussed the approximate
controllability result of a class of dynamic control systems
described by nonlinear fractional stochastic functional
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differential equations in Hilbert space driven by fractional
Brownian motion with Hurst parameter H > % . Ahmed [2]

investigate the approximate controllability problem for the
class of impulsive neutral stochastic functional differential
equations with finite delay and fractional Brownian

motion with Hurst parameter H > % in a Hilbert space.

Abid, Hasan and Quaez [1] studied the Approximate
controllability of fractional stochastic integro-differential
equations which is derived by mixed type of fractional

. . . 1 .
Brownian motion with Hurst parameter H > and wiener

process in real separable Hilbert space.
In this paper we will study the approximate
controllability of nonlinear stochastic system. More

precisely, we shall formulate and prove sufficient
conditions for the Approximate controllability of
Fractional order 0 < a <1 Riemann-Liouville type

stochastic perturbed control systems driven by mixed
fractional Brownian motion in a real separable Hilbert
spaces.

The rest of this paper is organized as follows, in section
2, we will introduced some concepts, definitions and some
lemmas of semigroup theory and fractional stochastic
calculus which are useful for us here. In section 3, we will
prove our main result.

2. Preliminaries

In this section, we introduce some notations and
preliminary results, which we needed to establish our
results.

Definition (2.1), [5]:

Let H be a constant belonging to (0, 1). A one
dimensional ~ fractional ~Brownian motion BY =
{Bfit =0} of Hurst index H is a continuous and
centered Gaussian process with covariance function

E(BI,BY)) = (21 4 2 — |t—s|?) fort,s > 0.(1)

o If H = % then the increments of B" are non-

correlated, and consequently independent. So B is a
Wiener Process which we denote further by B.

e If H e (%, 1) then the increments are positively

correlated.
o If H e (0,%) then the increments are negative
correlated.
B " has the integral representation
Bll)= J, Ku(t,s) dB, )
where, B is a wiener process and the kernel

Ky (t, s) defined as

_ l—H t H—E H—l
Ky(ts)=cHs2 " [(u—s)""Zu" zdu 3)

1
aK t\H2 3
. (t,s) =cH (;) 2 (t— S)H 2 (€))
_| HEH-D) z . .
cH= [Mg] , t> s and §3 is a beta function.

In the case H= 2, we shall use Ito Isometry theorem
Lemma (2.1), “Ito isometry theorem”, [11]:

Let V [0,T] be the class of functions such that f: [0, T] x
QO->R , f is measurable , &- adapted and

E [fOT(f(t, w))zdt] < oo. Then for every f €V [0,T], we
have
2 2
E [ T u))dB(t)] - [ INGED) dt] )
where B is a wiener process.

Now, we denote by g the set of step functions on [0,
T].If ® e g then, we can write it the form as:

O(t) = Xk=g ax L, 4y ,,1(D) , where t € [0,T].

The integral of a step function ® e g with respect to one
dimensional fractional Brownian motion is defined

T
Jy ®®dB = ¥b_, a (B — B,
where a, € R,

0=t <tz <...... <tn+1 =T.

Let IC be the Hilbert space defined as the closure of g
with respect to the scalar product <lpoq,1ps> = Ru(t, ) =
E(BHB!). The mapping 1,0 — {B"(t) , t€ [0,T]} can be
extended to an isometry between % and spant’®
{Bf, ,t € [0, T]} .i.e. the mapping I - L* (Q & .P), ®
- fOT ®(t)dB! is isometry.

Remark (2.1):

o If H =% and 3¢ = L?([0, T]) then by use Ito isometry,

we have

E ( fOTop(t)dB)2 = [T(®®)dt (6)
o If H>% , we have

1
Ru(s,t) =3 (1?8 + |s]?H — Jt—s[?H), t,s=>0 (7)

dR
2 = H(Jef2-1 — e s[21) (8)

OR% = H(2H - 1)|t — s|?H2dsdt

Lemma (2.2), [6]:
For any functions ®, ¢ € L?[0,T] n L'[0,T], we have

. T T
i) E (fo ®(®dBY, [ @(s)ng)) = H(2H — 1) x
fOT. fOT D(t) @(s)|t — s|*"2dsdt
2
ii) E(dB! dB!Y)) = T = H(2H - 1)]t — s|?"~2dsdt

From this Lemma above, we obtain

E(ng’(t)ng) )2

=HEH-Dx [ [T o(s)o (1))t 5|

)
22450t
Remark (2.2), [6]:

The space JC contains the set of functions ®€ L?[0,T],

such that, fOT. fOT O(s)D(D) |t — s | 2H-2 dsdt < o0, which
1

includes LE([0,T)]).

Now,

Let # be the Banach space of measurable functions on
[0, T], such that
Ilel2z=H(2H — 1) [ [ @($)®(0) |t— s | 242 dsdt < oo(10)

Lemma (2.3), [10]:
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1
L([0,T]) <Lk ([0,T]) € H#cX.

Suppose that there exists a complete orthonormal
system {e,}o=, in Y. Let Q L (Y,Y) be the operator
defined by Qe, =2, e,, where A, >0 (n=1,2,....) are non-
negative real numbers with finite trace Tr Q =X, A, <
o.The infinite dimensional fractional Brownian motion

on Y can be defined by using covariance operator Q as

n=1va €, Brl;l(t)’

where BE(O are one dimensional fractional Brownian

motions mutually independent on (Q, &, P).

In order to defined stochastic integral with respect to
the Q-fractional Brownian motion. We introduce the space
L3 (Y,X) of all Q-Hilbert- Schmidt operators that is with
the inner product (®,¢) 9 = X3 1(Pe,, pe,) is a
separable Hilbert space.

Lemma (2.4), [10]:

Let {®(t)}e[o,r) be @ deterministic function with values
in LY (Y,X) The stochastic integral of ® with respect to
WH is defined by

j:)cb(s)dw(';') = Z::J:,m@(S)endB,'j(s)
= Yalg 0K (D) (5)dBrge
~

Lemma (2.5), [10]:
If ¢: [0, b] — L (Y, X) satisfies f lo(s)II? gds < oo

then the above sum in (11) is well defined as an X-valued
random variable and we have

_ H _
W(t) - WQ (O

(11)

2
E||fyoeaws | < zae [l ds (12)

Definition (2.2), [18]:

The Riemann - Liouvill derivative of order & > 0 with
lower limit zero for a function f can be written as:
d™ et f(s)
ow a hames @)
where, t>0, n—1<a<n.
Definition (2.4), [18]:

The Laplace transform of the Riemann-Liouville
fractional derivation of order oc > 0 gives as:

L{LDY f(1)} = A“L{E(D)(H)— ZRZgA[ Df ™ f(§)]=o(M)(14)

where, n-1<ao <n.
Lemma (2.6), [17]:

Let —A be the infinitesimal generator of an analytic
semigroup S(t), t= 0on a Hilbert space X. If —AA is a
bounded linear operator on X then —( A+AA) is the
infinitesimal generator of an analytic semigroup T(t), t
>0 onX
Remark (2.3):

Assume that T(t), t >0 is a compact analytic
semigroup of uniformly bounded operators in X, that is,
there exists M > 1 such that || T(9)x|| < M.

Definition (2.5):
An Xg-valued process x(t) is called a mild solution of

the system (1) if x(t) € C,_, ([0, T]; L2 (Q,XB)) and, for
te [0, T] satisfies the integral equation

LD f(t) =

+.[:)Ta(t “Bu( s)ds
+L§Ta(t )" 1F( (s.r,x(r))dr )ds (15)
IT (t-s)(t—s)" Ws

9(5 X(f))dW(r)

ty OL -1 H
+.[o o (t=s)(t- c(s)dW
where, T, (t) = fooo arM, (r)T(t%r) dr
M, (r) is a Mainardi's function.

Lemma (2.7):

If T(t), t = 0 is a compact analytic semigroup then the
family of operators T,(t) , t>0 have the following
properties:

i. For any fixed t > 0, the operator T, (t) is a linear and
bounded, i.e. for any x € X, there exists M > 1 such that

ITeOx [l < sl

ii. For any X € XB , there exists M >

iii. For any x € X, ||Ta(t)x ”B < Ngp t™®|lxllx where,
N r'2-B)

Nep = akg I(a(1-g)+1)

iv. {T,(t),t = 0} is a strongly continuous, which mean
that for every x € Xand 0 <t; <t,<T then ||T, (t,)x —
T, (txlly = 0 if t,- t,.

v. The operator T, (t) is a compact operator in X for t> 0.

1 such that

3. Main Result of the Approximately
Controllable

In this section, we formulate and prove the result on
approximate controllability of nonlinear fractional
stochastic perturbed control system driven by mixed
fractional Brownian motion in (1). To establish our results,
we introduce the following assumptions:

a) The operator T (t) is a compact for any t > 0.

b) The linear fractional order system of corresponding
the system (3.41) which has following form:

"Dax(t) = Ax(t) 4+ Bu(t), te [0, T]
DA x(E)|,—g = Xo, %< a<1 (16)
is an approximately controllable on [0,T].
¢) The functions F:[0,T]x Xz x Xz — X, h:[0,T]X
[0,T] x Xz — X are satisfying linear growth and

Lipschitz conditions. This mean that, for any x , y € Xg,

there exists positive constants K;,K, > 0and K3,K, >0
such that

”F (t,x(t),foth(t, s,x(s))ds ) -
Ft,ys,0tht,s,y(s)ds X2 <K1x—y[2

2
|F (6%, f; n(t 5, x())ds ) HX < Kp(1+ [IxI12)
lIh(t;s,x) —h(t,s,y) I < Kslx—yllf :
Ih(t s, %) [IF < Ky (1 + [IxI1F)
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Also, F is a uniformly bounded. In other word, there
exists D; > 0 such that

”F (t,x(t),fth(t, s,x(s))ds)”2 < Dy, forte[0, T]

d) The function o: [0,T]— L3 (Y; X) satisfies, for every t
€ [0, T]

fOtII G(S)Ili%ds<oo and there exists C; > 0 such
that sup ||0'(S)(t)||io <C,.

te[o,T] c

e) G is Fy — adapted with respect to t, such that, for
every t € [0,T], satisfy the following:

L@, Exists

.. rt ~ 2
ii. JJE ||(Gx)(t)||des < oo
iii. There exists D, > 0, such that

~ 2
supeqo;r E | GO, <De.

where, (Gx)(t) = G (t,x(t),fotg(s,x(s))dW(S))
Definition (3.1):

The system (1) is said to be approximately controllable
on [0,T] if the reachable set R(T) is dense in the space
L2(Q,X). This mean that (T)= L?(Q,X). where, &(T) =
{x(T,u):u€ L% ([0,T]; U)}

Now,

The controllability operator I'T associated with control
system (16) is defined by

[T= (T = 9«1 T, (T - 9 BB T;(T— 0dt  (17)

Also, for any 6 > 0 and 0 <s< T,
R(6,TT) is defined by

R(6,TT) = (61 + IT)"? (18)

where, B*and T are the adjoint operators for B and
T, respectively.
Lemma (3.1), [12]:

The linear fractional order deterministic system in (1) is
an approximately controllable on [0, T] if and only if the
operator 8 R(8,I7) —» 0 as 6 - 0*, [[6R(O, D) < 1.
Lemma (3.2), [13]: For any x; €L?(Q, &1 Xp), there exists

Ael? (Q; 12([0, T]; L3 (Y,x))) and
b €12 (Q; L2([0, T); L, (K; x))), such that

the operator

T T ~
xp = Exp + [ &(s)dW,y + [) H(s)dw(l,  (19)
where, sup.epor1 E lO®IIZ, < €,
L2 .
SUPiefo,r] E ”H(t)”L% =C

Now, For any ® > 0 and any x; € L2(Q, &1,Xp), we
defined the control function of the system (1) in the
following form:

ue(t,x)
=BT, (T-t)RO.I)(Exr - T ()T xo)

* v

BTG (T-t) [TR (0,17 )g(s)aw,

BT (T-1)[) R(6.17)H (s)wW)

RO, IT)T, (T—s)(T-s)* ]

F(s,x(s) j(fh(s,r,X(r))dfj

RO, IT)T, (T-5)(T-s)
s, X(s),

G| s

o 90w x (W)

-

R(0,14)T, (T-s) "

(T-s)o(s) |

Lemma (3.3): There exists positive real constant N, such
that for all x € C ([o, T]; 12 (Q,XB)),

—

—B*T’;(T—t)j

o

a-1

BT (T-1)]; W) (20)

—

—B*T’;(T—t)j

o

E [Ju (50| < N 21)

where,

12LB
© = () ( [x T"B

L%
ezaxa»Z

T2 )

2H| 2 pp2
MTE, » 2HTHLEM? ¢

02 (I (a))?

+6

+ 3 v ’BZD]_
0%(I'(a )) (1 2aB)(2a—-1)
6L2 ZTZO, Z(IB v 2D
02(I"(0))2 (1 20p)(20.-1) Nap D2
12HL2 -|—2a 2Qﬁ+2H -1 v 2
Ngp Cy

D 2(r ())?(2a—1)(1—2ap)

Proof
Let x € c([o,T]; LZ(Q,XB)) and T > 0 be a fixed.
From the equation (21), we have:

2
EHue (t, x)”

<6E|B T,(T-t)R(8,Tp)| .
a( ) 0 ¥ (T

+6E(B T (T—t)IR(O,FsT)ﬂS)dW(s)

+6E|B"T, (T-1)[R(60.17 ) A (s Jaw
0

R(O, T4 )T, (T—s)(T-s)""
+6E B T, (T - t)jo F(SX t ds

),Ih(s,r,x(r))dr

0

RO, TT)T, (T—s)(T-s)" |

+6E BT (T-1) [, G(S "

s AW,
s), fo(v, x(v))dW(v)] <)

0
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2
RO,T)T, (T-s
+6E BT (T-1) [ ( )1 o )dW(';')
(T=s)""o(s)
Applying Holder’s inequality and by using Ito isometry ,
Lemmas (2.5), (2.7) and the assumptions (a)-(e), we
obtain

Efu @’ < N

where,
12LB 2a—2 2
E|[x
= s €l (Tl
2 2H{ 2 p g2
+6%M2TC +12HT—LB';/I(;
0 (r(a)) 02 (1 («)

N
0% (I'(a )) (1 20p)(20.-1)
6L2 2-|—2a 20

+ez(r( )2 (- 20p) (20— 1)
12HL2 -|—2a 20B+2H-1 N

0 (' ()2 (2a—1)(1— 2ap)

2
a,B Dl

2
No,p"C1

Now,
For any 6 > 0, consider the operator Wy on

Cia ([0, T]; 12 (Q,XB)) defined as follows:

(Fpx)(t) =Tu(t)(t)°“1 Xo

+.[ T, (t=s)(t- ) Bu® (t, x)ds
Ty (t-s)(t-s)" ( (s),j;h(s,r,x(r))dr)ds
t Ta(t—s)(t—s)“_l

. dw,
o G(s,x(s),jog(V,X(V))dW(v)) ©

.[ tsts“l(s)dWH

(22)
Also, for any &6 >0 , the subset Bs of
Cla([OT-LZ(QXB)) is define as B5={x(t)e

Ci 0(([0 T]; L2(Q, XB)) Ix@II2,_ < 6}.

Lemma (3.4):

forany® > 0, There exists & > 0 such that ¥y (Bs)
CBs;.

Proof:

To prove that there exists 6 > 0 such that Wy (Bs)
CBs, in other word, || Wox(t)lIE,_ < &, for each x(t) €
B;.

Suppose that this is not true, then for each § > 0, there
exists x(t) € Bs such that || LI’ex(t)llCl > 6, for te

[0,T], t may depending upon &. However, on the other
hand, we have

2

22| wx(v); <5t*2E|T 5

(D) x|

+5t272E Bu® (s, x)ds

[ Ta(t-s)(t-5)"

-2
T, (t-s)(t-s)" ™
stz Ef

O_'F(S*X(s)’ﬁ“(s'r’x(r))drj- b

M a-1
+&2&Er1¢ath9
0 G(s X J' g(v, x(v))dW(V)j

ds

451229 [ [ T, (t-s)(t—s)" o (s)AW

Applying Holder’s inequality and by using Ito isometry ,
Lemmas (2.5), (2.7), (3.3) and the assumptions (a)-(e), we
obtain

SUPte[0.T] t2_2°‘E||\Pex(t)||§
SLET 2PNCNG

(2a-1)(1-2ap)

M? 2
< 5—2E||x0||[3

(T(a))
5T220Bp N2B 5TZ 2PNz 5D,
|(2a (1 20B)| |20L—l)(l—2a[5)|
10HT1+2H Z(Xﬁ v

+—
|a-1)@1-20p)|

Hence,

[eoxcole,

SLET* 2PNCNG
(2a-1)(1-2ap)

M? 2
< 5—E X

|(2a - 2(xB)| | 2a—1)(1—2aB)|

10HT1+2H—2G[3 _
+—N0LB 1

|20 -1)(1-20p)|

Therefore,

SLETZ 2PNCNG
(2a-1)(1-2ap)

2
5 i Pk
5T2 2P DN 5T2_2°‘BN§YBD2
|(2a D(L-2aB)| | 20-1)(1-20B)|
10HTL+2H-208
+mNaB 1

By dividing both sides of above inequality by & and
taking the limit as § —oo, which is a contradiction. Thus,
for each © > 0, there exists positive number § such that
Wy (Bs) cBs.

Now,

Let ¥y, = ¥, + W, where,
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t Ty (t-s)(t-s)* ™

(#p)(t) = \ o
P (t) IO F(S,x(s),‘[oh(S,r,X(r))dl’j
(220() =T ()"
+f Ty (t-5)(t=s)" " Bu’(s,20ds
T, (t-s)(t-5)"" @9

+ t S dW(S)
0 G[S,X(S),jg(VaX(V))dW(v)]
0

+fy Ta (t=5)(t=5)" "o (s)w)

Lemma (3.5):

Assume that the assumptions (a) — (e) hold, then for any
8 > 0, and for any x, y € By, (W,y)(t) + (W¥,X)(t) € Bs,
for te [0,T].
Proof

Letx,y€ Bz and 0 <t < T, we have

22 |(wyy)(1) + (2000
v a-1 2
T, ()" o

B
2
Bu® (s,x))ds

JoTalt=s)(t=5)"" '

- P )
T, (t-s)(t-s)

{5y Jnis v

- B
T (t-5)(t-5)"" |

6(s.x(6). [y st xwnwgy |
L - B

2
451220 j;Ta(t_s)(t_s)“*lc(s)dw(';)

<5t220g

45t2-20F

45272 |E [ '

45t2720 j

o

B

Applying Holder’s inequality and by using Ito isometry ,
Lemmas (2.5), (2.7), (3.3) and the assumptions (a)-(e), we
obtain

22 |(#yy)(1) + (£0) (0

M? 2
<5——E|x

|(2a na- 2aB)| |2(x—1)(1—2a[3)|
10HTE2H-20p
+—N0“B 1

|20 -1)(1- 20B)|

BLET  2PNCNZ
(20-1)(1-2ap)

which mean [I(W,y)() + (P,0OIIF, < 8

(F1y) () + (¥2x) (1) € Bs
Lemma (3.6):

,then

For any t € [0, T], the operator ¥, is a contraction on

Na,B T2-20B K1

Bg s prOVIdEd m

that y =

Proof:
Lette [0,T],andy, y, € By, we have
_ 2
t? 2aE||‘P1Y1(t)_lP1y2 (t)"B

T, (t-s)(t-s)?
F(s, yi(s), L; h(s.r.y; (r))dr)
—F[s, y2(s), jh (s.r.y2 (r))er
p

2

—t2-20F I(t)

0

By using lemma (2.7) and assumption (c), we get

t2‘2“E||T1y1 t —\Plyz(t)";

g o Nea 9 P KE B (9) vz o)

|2a 1

By taking the supremum over t € [0,T] for both sides,
we have

Upefo, Tt 2"E [¥1y: (1) - ¥1y2 (1)}
NZBTZ‘Z"*BK ,
_ep’ ™ML £ ¢ }
<|(2a H(1- 2“3)|te[oT]{ "yl YZ( )||l3
Therefore,
[Way1 (t)—¥1y2 (t) "él—u
N BTZ ZaﬁKl ,
*Teu-va-zap) 2 Ol
<yl (t)-y2 (1) ||C1_a

NZ 2 T2-20B K1
Where, y = ————

[a—1)(1-2aB)]
Lemma (3.7):

Assume that the assumptions (a) — (e) hold, then the
operator ¥, maps bounded sets into bounded sets in By .
Proof:

Let x () € Bx, fort € [0, T], we have

<1, hence ¥, is a contraction.

t2_2“E||‘{’2x(t)||§

2
< 4t>"2°g| T, (t)(t)“‘lxou
B
2
41220 J‘; To(t-s)(t _5)"*1 Bu® (s, x)ds
p
v o1 2
Ty (t=s)(t-s)
+4t2—2(lE t S dW
IO G{s,x(s),jg(V,X(V))dW(v)] ©
0
B

2

141220 j;Ta(t_s)(t_s)a—lc(s)dw('g)

p
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Applying Holder’s inequality and by using Ito isometry ,
Lemmas (2.5), (2.7), (3.3) and the assumptions (a)-(e), we
obtain

72 E | Wx@®lZ < D

LgPT2 =26 Ne N
(2a—1)(1-2aB)

b =4—=

where, T (0())2

E lixllZ +4

T2-2aB N2 . p 142H-20f

4 ap V2 HT N C1
|Qa-D(-2ap)] |Ra-1)(1-2ap)| %P

By taking the supremum over te [0,T] for both sides,

we get sup t22¢E|| W,x(b)||2 <
te[0,T]

Therefore, for each x € By, we get || Lsz(t)llCl W S
b. Then W, maps bounded sets into bounded sets in By .

Lemma (3.8):

Assume that the assumptions (a) —
a continuous on  By.
Proof:

Let {x,}n=, be a sequence in Bz such that x, — x as
n—- o inCy_, ([O,T]; LZ(Q,XB)). For each t€[0,T] , we
have

(e) hold, then W, is

t2720E | (P,x, )(t)-(‘PzX)(t)"é

< pt2-20p J‘t T (t-s)(t-s)"" s
0 B[ue(s,xn)—ue(s,x)]

Y a-1
+2t2—2aE J‘;{T(f(t_s)(t_f) }dw(s)

[(Gxn)(8) - (GX)(s)]
From Ito isometry and lemma (2.7), we obtain
22 E] (P2 )O-(¥200)]

(t- S)—2a5+2a—2

<2LHNZpt* 2“]3 . . , s
EHu (s:xp)—u (sx)”

N

N ™=

=

—2ap+20-2
t-s
+2NZ gt> 2‘*] { (=)
E[(Gxq)(s) - (Gx)(s)||
Therefore, it follows from the continuity of G and u®
that for each t € [0,T] , G(s,x, (s),fosg(v,xn (v))dW,,)
> G(s,x(), J; (v x()dW,))  and  u®(s,x,)

u®(s,x), using the Lebesgue dominated convergence
theorem that for all t €[0,T] , we conclude

| (¥x)(0 = (#0)®) ||, =0, as n— oo, Implying

that ||W,x,- ¥,x ”c1_
continuous on Bg.

Lemma (3.9):

If the assumptions (a) — (€) are hold, then for x € By ,
the set {(¥,x)(t),t € [0,T]} is equicontinuous.
Proof:

Let t;,t, € [0, T] such that 0 <t; < t, <T. Then,
from the equation (24), we have

— 0, as n—oo. Hence, ¥, is
o

E[[¥2x(t2) - ¥ox(t)]; s7E||[(Ta(tz)—Tu(tl)]xOllg

T, (ty —s
+14E J.tl(tz—s)“{ «(t2-5) Bu® (s, x)ds

+14E J 1T, (ty—s) Bu® (s, x)ds

2
+7E“I:f Ty (t2-s)(t2 —S)Q_l Bue(s, x)ds

p
2

T, (t, - .
+14E I(:l(tz —s)“_l{_;( (Zt 1 _SZ):I(GX)(s)dW(S)

(tp—s)*™

~(ty-8)"

J‘ 2 t2 _ )(t2 _S)a—l

B
2

. (Gx)(s)dW(s)
B

+14E|[* T, (t,-5)

2

+7E (Gx)(s)dW(S)
B

H
(W)

_T(x(tl_s)_ b

(tz-s)" | (s)w"! 2
(e}

~(ty-s)" | ©) 5

[T, (12-9)(tz -5)" o (s)de:

Now, from Lemma (2.7), noting the fact that for
every € > 0, there exists T> 0 such that, whenever t, —1;

0

T,(t;-s) |
+14E jtl(tz—s)“‘{ ‘f( 27) o

+14E|[1T, (1 -5)

+7E‘

< 1, for everyt; t, €[0,T], ||Ta(tz) - Ta(tl)”; <
Therefore, when t, —t; < 1, we have
E||T2X(t2)—T2X(t1)||§
2 2 20
< 72 x| +14 7BE Ne T
P [20.-1
LENGNG T2 | (ta —s)* ds
L-20p 70| (g s
2 20
c2 2 (2 20-20p-2 e D,T
+7NCN%[3LBL1 (tz —S) dS+l4m

NZ D Tl*Z(XB
PR it AN tl[(tz—s)
[L-2ap| O

2
(4 —s)“_l} ds

+7NQBDZI —s)P 2P 2gs
20+2H-2
+28He%C,
20—1
2 _20p| (t2-8)" '
+28H T2 NG o [ (1 —s) ™ ds
PJo 1
(ti—s)
+28HT? e N2 j —s)P 2P 2gs
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The right hand of the inequality above tends to 0 as t,
—t;ande » 0. Hence for x € By the set {W¥,x,t€
[0,T]} is equicontinuous.

Lemma (3.10):

If the assumption (a) is hold. Then for each t €[0, T],
the set U (t) = {W¥,x,x € Bz} is relatively compact
in By .

Proof:

Lette (0,T] be a fixed and 0 <a <t, for every y >0, X

€ Bj, we define

waTx(t) = j;oarMa(r)T(t“r)(t)“_l Xodr

+jt_é.fwarMa (r)T((t=s)"r)(t—s)""Bu® (t,x)drds

(25)
J’t - j arM,, (1) T((t-9)" 1) (t-5)* " (Gx)(s)draw
+I f arM, (1) T((t-s)"r) (t-s)*" (s)drdW(':)

Then, from the definition of semigroupT(t®r), t*r > 0,
we can easily be written in the form, T(t*r)= T(a%y)
T(t*r — a%y), from the equality (25), we have

T(a y)j arM, (r) T(t*r-a%)(t)* " xodr
o arMa(r)T((t—s)“r—é“y)_
(t-5)""Bu’ (t,x)

v ("(X )J'téJ‘OO_U'rMOL(r)T((t_S)ar_éaY)
71 (t=s)" (6x)(s)

3 arM, (r) T((t-s)r s

—amp(t-s)to(s)| O

Then, from the compactness of T(a%y), we obtain that
the set {¥," x(t) ,x € Bj } is relatively compact in X for
everya such that 0 < a < t. Moreover, forx € Bs, we

can easily prove that ¥;" x(t) is convergent to W,x(t)
in Bs, as 4 » 0" and y—> 0, hence the set U ()=
{W¥,x,x € By} isrelatively compact in B;.

Lemma (3.11):

If the assumptions (a) —
completely continuous.
Proof:

From lemma (3.7) and (3.9), for each x € By the
operator ¥, is uniformly bounded and the set {¥,x,t €
[0, T]} is equicontinuous by Appling the Arzela —Ascoli
theorem, it results that for x € Bj, the set { W,x,t€
[0, T]} is relatively compact.
we obtain that W, is a completely continuous.

Theorem (3.1):

If the assumptions (a)-(e) are satisfied. Then for each 6 >
0, the control system (1) has a mild solution on [0, T],
Na N T2-20B K1

a—1)(1-2ap)I

PEx(t) =

drds

drdW(S)

(e) are hold. Then ¥, is a

provided thaty =

Proof:

For any 6 > 0 and for any X, y € By ,
(Py)(t)+ (W,x)(t) € By, for te [0,T]. By using lemma
(3.6) and (3.11) with applying Krasnoselskii’s fixed point
theorem, we conclude that the operator W, has a fixed
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point, which gives rise to mild solution of system (1) with
stochastic control function given in (20). This completes
the proof.

Theorem (3.2):

If the assumptions (a) — (e) are satisfied. Then the
stochastic control system (1) is approximately controllable
on [0,T].

Proof:
For every 8 > 0, let x4 be a fixed point of the operator

W, in the space C;_, ([O,T]; LZ(Q,XB)), which is a mild

solution under the stochastic control function in (20) of
the stochastic control system (1). Then, we have

X9 (T) = x7 ~eR (T3 ) Bxr =To (T)(T)* o

—j eR(e r{ )a(s)wg

OR(0.r)To(T —s)*t
+jo s ds (25)
(sxe s),ohsrxe rj
: eR(e rsT) . T-s)**
+IO s dW(S)
(s X (s), jo (v, xe(v))dW(v)j
+j 0 R (6,17 )T, ( —s)° 1c(s)dW(':)

By using the assumptions (c) the function F is
uniformly bounded, such that

E ||F(t,x,f0th(t,s,x)ds)”2 <D;, for any 0 <s<T.
Then, for all (s,w) € [0, T] xXQ, there is a subsequence of
sequence {F(s,xy(s), [; h(s,1,xo(r))dr)}  denoted by
{F(s,xo(s), J; h(s,rxe(D))dr)}  which s weakly
converging to say F(s) in X. Also, there is a subsequence
of sequence {G(s, x4 (), [ 8(v, Xy (v))dW,,,)} denoted by
{G(s, %4 (5), fOS g(v,xg(v))dW,)} which is  weakly
converging to say G(s) in L,(K,X). On the other hand,

from the assumption (b), for all 0 < s < T the operator
OR(6,TT) - 0 Stronglyas 8 —» 0" and ||6 R(6, TD|| < 1.

€ (1) e
<ok o R (017 ) xr T ()T o

+8E|[ToR (0,17

Jo(sw)

+8Ej R(0.r7)H (sW

2

R(0.18 )T, (T—s)(T—s)"" i

e[ s s
jo [F(s, X (s), jh (s.r.xg (r))dr] —F(s)]
0

+8Ej OR (0,18 )T, (T—3)(T—s)" " F(s)as




T S
+8E IO G| s, Xg (S),Ig(V,Xe(V))dW(v) W(S)
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OR(0,17 )T, (T-s)(T—s)*"

0
-G(s)

By using the Lebesgue dominated convergence theorem,

we obtain E||xy(T) — x¢||> >0 as 8 — 0*. This gives
the approximate controllability.
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