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Abstract  In this report we analyze a subset of chemical equations that have equal numbers of elements and 
unknown coefficients; linear algebraically, these relate to n X n matrix systems. Here we associate inhomogeneous 
eigenvector occurrences to structural properties of chemical equations. 
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1. Introduction 
Linear algebra and chemistry mainly unite in the field 

of stoichiometry. Here linear algebra has proven to be 
effective in establishing systematic representations across 
all types of chemical equations (e.g. combustion, redox, 
acid/base, etc.) [1,2,3,4]. In this report, such 
representations are used specifically for what we call 
square chemical equations—or reactions that have the 
same number of compounds as unknown coefficients in 
their representative equations. The interest in this subset 
of chemical equations arises from the chemistry-based 
matrix systems formerly acknowledged. For any square 
chemical equation, we find a matrix system of the order n 
X n is always established (hence “square”). In [1] I 
conclude that a proof for why chemical equations can be 
balanced with linear algebra exists, but never state it. We 
begin with an extended, explanatory proof. 

Consider the characteristic equation 

 0x x xλ λ λλ= ≠A


    (1) 

where A is a square n X n matrix and xλ
  is an 

eigenvector for one of n unique eigenvalues λ [5]. In [1] I 
describe how a chemical equation Ac, for example, where  
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(where x1 through xr denote both the term and unknown 
coefficient for the compounds reacting, and xr+1 through xp 
denote likewise for those being produced) can be 
represented by the matrix setting  
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 (2) 

from simple conservation of mass—that is, 

 reactants products 0,− =∑ ∑  (3) 

where the above equation refers to the same element [6]. 
Eq 2, however, reformulates to 0x =A



  and, if A is n X n, 
then λ = 0 in eq 1. Thus, if a chemical equation possesses 
a square coefficient matrix, then there exists at least one λ 
= 0. 
Definition. n X n coefficient matrices (those derived from 
square chemical equations), we call chemical matrices.  

In [1] I continue to explain how the kernel of a 
chemical matrix (a consequence of its reduced row 
echelon form) can yield the solution to the chemical 
equation. This is of no surprise, however, as we have 
determined that all chemical equations are linear-
homogeneous systems; and therefore have a unique null 
space (and thus chemical solution) equal to the vector x  
[6]. 

Such a solution, however, is only one of n for Ac, as an 
n X n matrix will have n eigenvalues and thus n 
eigenvectors associated with it. It is therefore the purpose 
of this work to examine these other linear algebraic 
significances. 

1.1. Creation of Chemical Matrices 
A majority of chemical equations retain dimensions of 

m X n where m ≠ n. Below we present two methods—the 
first for the case of m > n and the second for m < n—on 
creating chemical matrices that can be analyzed with eq 1. 
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Chemically, if m > n then the equation in question has 
more elements reacting than terms in the equation. For 
example, the reaction 

 c 1 3 2 3 4 3 3 4 4 3AgNO K PO Ag PO KNOx x x x= + → +B  

has a total of 5 unique elements, but only 4 terms. We find  

 

1 0 3 0
1 0 0 1

,3 4 4 3
0 3 0 1
0 1 1 0

− 
 − 
 = − −
 

− 
 − 

B  

where dim(B) = 5 X 4. Similar to adding zero to an 
algebra problem, we add the term Ag0N0O0K0P0 to the 
product side, yielding the term and coefficient designation 
x5. 1  Such an addition does not alter the chemical 
meaning—only the dimensions—of a given chemical 
equation. We then find  
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where dim(B’) = 5 X 5. 
We employ a similar tactic for the case of m < n; 

however, here we append an additional element Φ0 to each 
term in the non-square equation.2 For example, consider 
the reaction  

 c 1 2 2 2 3 2H O H Ox x x= + →C . 

Here  

 
2 0 2

,
0 2 1

− 
=  − 

C  

where dim(C) = 2 X 3. Appending Φ0 to each term 
established the reaction  

 c 1 2 0 2 2 0 3 2 0H O H O ,x x x′ = Φ + Φ → ΦC  

where  

 
2 0 2
0 2 1
0 0 0

− 
 ′ = − 
  

C .3 

Again, this method does not modify a chemical 
equations’ delineation—only its dimensions. 

1.2. Properties of Chemical Matrices 
Lemma 1. For any n X n chemical matrix A, n ≥ 2. 

Proof. By definition chemical matrices denote the 
changes compounds undergo in a reaction. If there is only 
a single element in the entire reaction (n = 1), then this 

                                                           
1 Albeit this term could be appended to either side of the equation, it is 
simplest to append to the rightmost side of the equation (the nth column).  
2 Φ0 could denote any element in the Periodic Table of the Elements; 
however, due to the zero subscript, it is non-existent in the equation. 
3 Similar to the case of m > n, it is easiest to append the Φ0 row vector to 
the bottommost row of a chemical matrix. 

element cannot react if the n X n matrix order is to be 
maintained. If n = 2, however, as in the reaction 

1 2 2 2x AB x A B→ , a reaction does occur, and is therefore 
the minimum order of a chemical matrix. 
Lemma 2. For any n X n chemical matrix A, det(A) = 0. 
Proof. By the invertible matrix theorem in [7],  
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λ
=

=∏A  (4) 

Because ∃ λ = 0, det(A) = 0. 
Consequently, [7] asserts that the following two 

conditions are true:  
1. the linear transformation x xA 

  is not one-to-one 
2. the columns of A do not form a linearly independent 

set. 
Albeit other assertions can be made, these are the few 

that have chemical significance. We will proceed in 
respective order.  

The linear transformation x xA 

  for chemical matrix 
A resembles one of the most fundamental laws governing 
balanced reactions: the law of multiple proportions—that 
is, “When an element combines with another to form more 
than one compound the masses of the second element 
combining with a fixed mass of the first element bear a 
simple ratio to one another” [8]. For example, the reaction 
2KClO3 → 2KCl + 3O2 is the same as 4KClO3 → 4KCl + 
6O2, which is the same as 2nKClO3 → 2nKCl + 3nO2, 
where n ∈ ℝ. Modeling this reaction linear algebraically 
produces the system  

 0

1 1 0
1 1 0 0,
3 0 2

x
− 

 − = 
 − 



  

where both 0x  and 0


 ∈ ℝn, and 0x  is the eigenvector for 
λ = 0. Because it is the ratio of the elements that must be 
identical, 0x  can be any scalar multiple of itself; therefore, 
the liner transformation x xA 

  cannot be one-to-one. 
Following eq 3, the total mass of a system is conserved 

for any closed reaction. This implies that, as in the 
previous example, all reactant columns (positive entries) 
are dependent on all product columns (negative entries), 
as the sum of unique scalar multiples of these columns 
must equal the zero-vector (eq 2). Accordingly, the 
columns of A do not form a linearly independent set.  
Definition. The fact that the commutative property of 
addition holds for chemical equations, provided the 
reactants remain on the reactant side and products on the 
product side, we call chemical commutativity.  

Chemical commutativity establishes the idea that 
chemical matrices with n > 2 will possess ≥ 2 λ = 0 and 
thus ≥ 2 chemical solutions. We prove this below.  

Let r denote the number of reacting terms in Ac and p 
the number being produced.  
Lemma 3. For any chemical equation Ac, there exists 
exactly (r!)(p!) empirical chemical solutions. 
Proof. The number of unique arrangements for the 
reactant side (Ur) in Ac is given by Ur = r!. Similarly, for 
the product side Up = p!. Consequently, the total number 
of unique arrangements is ∏(U) = (r!)(p!). 
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This result implies that (r!)(p!) chemically correct 
matrices exist, where each has at least one λ = 0 by eq 1. 

As trivial as chemical commutativity may seem, it is the 
basis to obtaining the first inhomogeneous significance we 
will explore. 

2. Main Results 
As stated in the introduction, the homogeneous 

equation 0x =A


  is unique to chemical equations as it 
demonstrates the law of conservation of mass. λ = 0, 
however, is one of n eigenvalues for a chemical matrix. In 
this section, we examine occurrences of λ ≠ 0 and the 
eigenvectors that correspond. 

The following assertions will be based on an n X n 
chemical matrix D, where  
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We denote the set of all matrix elements in D that lie 
upon the main diagonal—that is: {a11, b22, c33, etc.}—as 
ΓD. 
Definition. Terms in a chemical equation that consist of 
only one element in the entire substance, we call singular 
molecules. For example, O2 functions as a singular 
molecule in the reaction x1CH4 + x2O2 → x3H2O + x4CO2. 
Lemma 4. For any chemical reaction that either reacts or 
produces a singular molecule Aµ, where A is a singular 
molecule and µ is A’s corresponding subscript, ∃ ≥ 1 λ = 
µ, provided µ ∈ ΓD.  
Proof. Because µ represents a singular molecule in the 
reaction, all other values in the nth column of D must 
equal zero [1,3]. Thus,  
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The characteristic polynomial of D, P(D), can be 
factored into the form ∏ (λ – τ), where τ denotes a unique 
number (one of n) in the factored form of P(D). 4  By 
definition P(D) = 0, and thus each τ denotes an eigenvalue 
of D. To prove, we find det(D). By Laplace Expansion  
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Therefore, ( )λ µ  ∈ ∏ (λ – τ), or, similarly, ∃ ≥ 1 λ = µ.  
Lemma 5. For the specific case of µ =npp in D, x nµ =


 , 

where xµ
 is the eigenvector for λ = µ and n is the nth 

unit-vector in ℝn. 

                                                           
4 Note τ ∈ ℂ. 

Proof. Neglecting the trivial solution of 0xµ =


 , if we 

assume x nµ =


 , then  
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We find,  
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Consequently, .x xµ µλ=D   
We generalize this point below. 

Theorem 1. Provided µ ∈ ΓD, then { , , , }x i j nµ ∈
 




 ∈ ℝn. 

Proof. We assume { , , , }x i j nµ ∈
 



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respectively. This concludes the proof. 
Realize that because of chemical commutativity, 

obtaining the xµ
  eigenvector is simply a matter of 

rearranging a chemical matrix to allow µ ∈ ΓD (provided a 
singular molecule in the reaction exists). 

We continue by recalling the mathematical implication of 
the law of conservation of mass (eq 3). Reformulating eq 3 
for each element in Ac yields the linear-homogeneous system  
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as shown in [1]. Identically,  
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where, for instance, 1
xr

ar r rr x a=Σ = ∑ for all A elements 

reacting in Ac and 1
xp

ap p pp r x a= +Σ = ∑  for all A elements 

being produced.  
Definition. The vector R



 that results from the 
substitution of a random coefficient vector ζ



 into eq 6, 
we call residue.5 
Formally,  
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for any ζ


 substituted into Ac. For example, in the 
reaction x1KClO3 → x2KCl + x3O2, if we substitute in a 
random coefficient vector  
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(Obviously, the substitution of 0x  produces 0R =


, as in 
eq 6.)6 
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whole number ratios. We present the following question: 
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Proof. Eq 7 is derived from a system of equations similar 
to eq 5—that is,  
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where Rn denotes the nth element of R


. Equivalently,  
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Let xλζ =


 . Then, x Rλ =A


  with equivalent residue of 

xλλ   by eq 1. Therefore, x Rλ λ  =  A


 , or, 

indistinguishably, x Rλ  =  


 . 

The chemical connotation associated with x Rλ  =  


  
asserts that, on the foundations of eqs 6 and 7, other chemical 
solutions exist linear algebraically. Albeit inhomogeneous, 
these solutions associate themselves uniquely with 
different subsets of chemical equations. They are therefore 
only idiosyncratic to the structure of chemical equations, 
with no correspondence to chemical reactivity.  

3. Conclusion 
Through the use of linear algebra, specialized subsets of 

chemical equations were analyzed. In this manuscript, we 
proved correct the calculator-based balancing method 
explained in [1]. Introduced was the notion of chemical 
commutativity, which eventually inaugurated the 
mathematical implications of singular molecules. We then 
proved that all chemical equations will have residue Rλ   



 

for any 0xλ ≠


 , which demonstrates that inhomogeneous 
solutions to chemical equations exist, but only structurally.  
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