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Abstract  It is already known the appearance of time advance (due to distortion by the non-resonant background) 
instead of the expected time delay in the region of a compound-nucleus resonance in the center-of-mass (C-) system. 
Here at the same conditions we study cross sections and durations of the neutron-nucleus scattering in the laboratory 
(L-) system. Here it is shown that such time advance is a virtual paradox but in the L-system the time-advance 
phenomenon does not occur and only the trivial time delay is observed. At the same time the transformations from 
C-system into the L-system appeared to be different from the standard kinematical transformations because in the C-
system the motion of a compound nucleus is absent but it is present in the L-system. We analyze the initial wave-
packet motion (after the collision origin) and the cross section in the laboratory (L-) system. Also here (as physical 
revelations of profound general methodic and in very good consistent accordance with the experiment) several 
results of the calculated cross sections for the neutron-nucleus in comparison with the experimental data in the L-
system at the range of one or two overlapped compound resonances are presented. It is shown in the space-time 
approach that the standard kinematical transformations of cross sections from the C-system to the L-system are not 
valid because it is necessary to consider the center-of-mass motion in the L-system. Finally on a correct self-
consistent base of the space-time description of the nuclear processes in the laboratory system with 3 particles in the 
final channel, it is shown the validity of the former approach, obtained for the space-time description of the nuclear 
processes with 2-particle channels earlier. 
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1. The Pre-history of the Problem 
It was found in [1-7] the phenomenon of time advance 

instead of expected time delay in the C-system. This 
phenomenon is usually accompanied by a cross section 
minimum for almost the same energy. Then naturally the 
question had arisen if this advance manifested also in the 
L-system? 

 Then in [8,9,10] it was found that the standard 
formulas of cross section transformations from the L- to 
C- system are inapplicable in the cases of two (and more) 
collision mechanisms. Usually the delay-advance 
phenomenon appears for nucleon-nucleus elastic 
scattering near a resonance, distorted by the non-resonant 

background, in the C-system. Usually (see, for instance, 
[1,2,3]) the amplitude FC (E,θ) for the elastic scattering of 
nucleons by spherical nuclei near an isolated resonance in 
the C-system can be written as 

 FC(E,θ) = f (E,θ) + fl, res (E,θ), (1)  
where 
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here E , resE and Γ are the excitation energy, the 
resonance energy and the width of the compound nucleus, 
respectively; we neglect the spin-orbital interaction and 
consider a comparatively heavy nucleus.  

Rewriting (1) in the form 

 FC(E,θ) =[A(E*–E*res)+iBΓ/2](E* –E*res+iΓ/2)-1 (1a) 
where 

 A = f (E,θ) + (k)-1 (2l+1)Pl(cosθ) exp (iδlb)sin δlb ,  
 B = f (E,θ) + (ik)-1 (2l+1)Pl(cosθ)exp (iδlb)cosδlb , 
we obtain the following expression for the scattering 
duration τ C(E,θ): 

 τ C(E,θ) = 2R/v + ħ∂ argF/∂E ≡ 2R/v + ∆τ C(E,θ) (2) 
in case of the quasi-monochromatic particles which have 
very small energy spreads ∆E<<Γ. Formula (2) was 
obtained in [1]. In formula (2), v=ħk/µ is the projectile 
velocity, R is the interaction radius, and ∆τC is 
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with 

 τres = (ħΓ/2)[(E* – E*res)2 + Γ 2/4]-1, α = ΓB/A. (4) 
From (3) one can see that, if 0<Reα<Γ, the quantity 

∆τ(E,θ) appears to be negative in the energy interval ∼ 
Reα around the center at the energy E*res+Imα /2. When 
0<Reα /Γ <<1 the minimal delay time can obtain the 
value –2 / Reα <0. Thus, when Reα → 0+, the 
interference of the resonance and the background 
scattering can bring to as much as desired large of the 
advance instead of the delay! Such situation is 
mathematically described by the zero E*res++iα /2, 
besides the pole E*res –iΓ /2, of the amplitude FC(E,θ) (or 

the correspondent T-matrix) in the lower unphysical half-
plane of the complex values for energy E. We should 
notice that a very large advance can bring to the problem 
of causality violation (see, for instance the note in [2]). 
The delay-advance phenomenon in the C-system was 
studied in [1-3] for the nucleon-nucleus elastic scattering.  

For two overlapped resonances the amplitude for an 
elastic scattering can be written in center-of-mass system 
also in form (1): 

 ( ) ( ) ( )θ θ θC
l,resF E, = f E, + f E,  

where 

 
( ) ( ) ( )

( ) ( ) ( )
1

λ λ

θ θ

2λ 1 cosθ exp δ 1

coul

b

f E, = f E, + 2ik

+ P 2i

−

 −  ∑
 (5) 

and already 

 
( ) ( ) ( ) ( ) ( )1

,1 ,2

,1 ,2

θ 2l 1 cosθ exp δ

Γ / 2 Γ / 2
1 ,

Γ / 2 Γ / 2

b
l,res l l

res res

res res

f E, = 2 ik + P 2i

E E i E E i
E E +i E E +i

−

   − − − −
−     − −    

 (6) 

we obtain the following expression for the total scattering 
duration τ C(E,θ)  

 τ C(E,θ) = 2R/v + ħ∂ argF/∂E ≡ 2R/v + ∆τ C(E,θ)  
for the quasi-monochromatic particles which have very 
small energy spreads ∆E<<Γ , when one can use the 
method of stationary phase for approaching the group 
velocity of the wave packet.  

At Figure 1 and Figure 2 we can see the energy 
dependence of ( )Δ θCt E,  for two couples of overlapped 
resonances in neutron-nucleus elastic scattering [7]. 

 

Figure 1. Energy dependence of ( )Δ θCt E,  near two overlapped resonances 58Ni 1 649.8 0.1681E = keV; Г = keV  and 2 650.6E = keV;  

2 0.521Г = keV  
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Figure 2. Energy dependence of ( )Δ θCt E,  near two overlapped resonances 58Ni 3 745.6 0.73E = keV; Г = keV and 4 746,5E = keV;  

4 0,8Г = keV  

2. The Collision-process Diagram with 2 
Mechanisms (Direct Process and Collision 
with the Formation of a compound 
Nucleus) 

In Figure 3a, Figure 3b these two processes in the L-
system are pictorially presented. They represent a prompt 
(direct) and a delayed compound-resonance mechanism of 
the emitting y particle and Y nucleus, respectively. The 
both mechanisms are macroscopically schematically 
indistinguishable but they are microscopically different 
processes 

 

Figure 3(a). Diagram of the direct process 

Figure 3(a) represents the direct process of a prompt 
emission of the final products from the collision point C0 
with a very small time duration τ dir, while Figure 3(b) 
represents the motion of a compound-resonance nucleus Z 
from point C0 to point C1 , where it decays by the final 

products y + Y after traveling a distance between C0 and 
C1 (which is equal to ∼VC ∆τres) before its decay. Here VC 
is the compound-nucleus velocity, equal to the center-of-
mass velocity, and ∆τres = =ħΓ /2) / [(EZ –Eres,Z)2 +Γ 2/4] is 
the mean time of the nucleus Z motion before its decay 
[8,9,10,11] for the case of one compound resonance, the 
energy spread ∆E of the incident particle x being very 
small in comparison with the resonance width Γ, EZ = E*, 
Eres,Z = E*res. For the clarity of the difference between 
both processes in time, we impose the evident practical 
condition  

 τdir<<∆τres(EZ) near (EZ –Eres,Z)2 ≈Γ 2 /4 . (7) 

 

Figure 3(b). Diagram of process with the compound nucleus 

For the macroscopically defined cross sections, in the 
case of very large macroscopic distances r1 (near the 
detector of the final particle y) with very small angular and 
energy resolution (∆θ1<<θ1 and ∆k1<<k1 ), the angles θ1 

and 1θ  , as well as momentums k1 and 1k , can be 

considered as practically coincident. Really, θ1– 1θ ∼∆r1 /r1 

and k1– 1k ∼∆r1 /r1 with |∆r1| = |r1– 1r |. Using the usual 
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macroscopic definition of the cross section with the help 
of some transformations for the exit asymptotic wave 
packet of the system y + Y, in [4] it was obtained the 
following expression for the cross section σ of reaction (4) 
in the L-system: 

 σ =σ 0(incoh) + σ 1(interf), (8) 
where 
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 Φ=χ+β+ϕ, χ=arg( ( )1/2 L
C L Z

J γ→ • )–arg( ( )L
dirf ), 

 β=arg( . ) / 2Z res ZE E i− + Γ )-1 (13) 

 ϕ = k1∆r1+k2 ∆r2 , ∆r1,2 =V⊥(1,2)∆τres , 

1,2V  is the projection of the Z-nucleus velocity to the 

direction of 1,2k


, δl is the l-wave scattering background 
phase shift. Formulas (8)-(11) were obtained for a quasi-
monochromatic incident beam (∆E<<E) and a very small 
angular and energy resolution (∆θ1<<θ1, ∆E<<Γ) of the 
final-particle detector.  

For the simplicity we neglect here the spin-orbital 
coupling and we suppose also that the absolute values of 
all differences rn/vn – rp/vp (n≠p=1,2) are much less than 
the time resolutions. Here JC  L is the standard Jacobian of 
pure cinematic transformations from the C-system to the 
L-system.  

We underline that formulas (8)-(13) for the cross 
section σ, obtained in [8,9,10,11] and defined by the usual 
macroscopic way, take into account a real microscopic 
motion of the compound nucleus. So, the formulas (8)-(13) 
differ from the standard kinematical transformation of 
σC(E,θ)=FC(E,θ)2 from the C-system into the L-system, 
considering only the kinematical transformations of the 
energies and angles from the C-system (with ϕ =0) to the 
L-system. Such difference arises because the formal 
expression for σ C(E,θ) as taken without consideration of 
the microscopic difference between the processes in 
Figure 3a and Figure 3b, and thus without consideration 
of the parameter ϕ = k1∆r1+k2 ∆r2 , ∆r1,2 =V⊥ (1,2) ∆τres. 

3. The Lack of Time Advance near 
Compound-resonances in the L-system 

We underline that formulas (8)-(13) for the cross 
section σ, obtained here, are defined by the usual 
macroscopic way and also consider the real microscopic 
motion of the compound nucleus which strongly differ 
them from the standard cinematic transformation 
σC(E,θ)=|FC(E,θ)|2 from C-system into L-system namely 
by the interference of the amplitudes ( )L

dirf  and 
( )1/2

, / 2

C
C L Z

Z res Z

J

E E i

γ→ •

− + Γ
⋅exp(iϕ), ϕ = k1∆r1+k2 ∆r2 (where ∆r1,2 

=Vproj1,2 ∆τres). The parameter ϕ reflects the influence of 
the compound-nucleus motion. 

 In the first my works (for instance, in [1,2,3]) usually 
the analysis of the amplitudes, cross sections and 
durations of the elastic scattering performed on the base of 
formulas (1) → (1a) in C-system, in which the compound-
nucleus motion in L-system did not taken into account. 
But taking in account the motion of the decaying 
compound nucleus in L-system, the expressions for the 
amplitude of the collision process, which is going on with 
the formation of excited compound nucleus in the region 
of a resonance in C- and L-systems, differ not only by the 
standard cinematic transformations {E C,θ C}↔{E L,θ L}. 
It is necessary take into account also the motion of the 
decaying compound nucleus along the distance VC ∆τres, as 
it was shown in Figure 3а, Figure 3b. In [1,2,3] formulas 
(1) and (1a) were written in C-system and are described 
the coherent sum of the interfering terms for the both of 
cross section σC(E,θ) =|FC(E,θ)|2 and the time delay 
∆τC(E,θ) without the microscopic motion of the decaying 
compound nucleus from point C0 till point C1. It is 
possible to evaluate the general duration of collision in L-
system, taking the superposition of the wave packets of 
the direct scattering and of the scattering, going on with 
the formation of the intermediate compound nucleus (in 
the correspondence with diagrams 1a and 1b, respectively), 
which was obtained in [8], and in the asymptotic range 
(for r→ ∞) after all the simplifications, considering the 
conservation of energy-impulse, receives the form 

(14) 

where V 0
1,2 = ħ 0

1,2k /m1,2 , ∆r1,2 = V⊥ (1,2) ∆τres , V⊥ (1,2) is the 
projection of the nucleus Z∗ motion velocity on the k1,2 
direction, ti is the initial time moment, defined by the 
amplitude phase of the initial weight factor gi , chosen for 
the simplicity in the Lorentzian form [const/(E1–E 0

1 +i∆E)] 
with the very small of the energy spread ∆E <<Γ; El = 
ħ2k 2

l / 2ml is the kinetic energy of the l-th particle with 
mass ml (l=1,2), correspondent to particles y and Y, 
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respectively. Тhen, utilizing the general approach from 
[12] for the mean collision duration  
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(with <tinitial> ≈ ti for quasi-monochromatic particles), we 
obtain after all the simplifications, mentioned in [8] and 
utilized here, the result, which consists in that, that the 
general time delay соrresponds to the time-energy 
uncertainty relation <τgeneral>∆E∼ħ for quasi-monochromatic 
particles (for which ∆E <<Γ and ∆τres ∆E<<1).  

Thus, we obtain the trivial mean time delay in the 
approximation ∆E <<Γ and ∆τres⋅⋅∆E<<1 for L-system 
without any advance, caused by “virtual unmoving” 
compound nucleus in C-system. Formulas (8)-(13) are the 
result of the self-consistent approach to the realistic 
analyze of the experimental data on the cross sections of 
nucleon-nucleus scattering in L-system. And any attempt 
to describe the experimental data of the nucleon-nucleus-
scattering cross sections near an isolated resonance, 
distorted by the non-resonance background, in L-system 
on the simple base of formula (1) in C-system with the 
further use of the standard cinematic relations {EC, θC} 
↔{E L,θ L} in L-system does not have any practical 
physical sense. And the reason of it is connected with that 
we neglect the real motion of the compound nucleus. 

For the case of two overlapped resonances [13] we have 
to calculate the wave function quite similarly to the case 
of one resonance before: 
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when 
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Here 0 0
1,2 1,2 1,2/V = k m , ∆r1,2 = 1,2V ∆τres, where 1,2V is 

the projection of the speed of nucleus Z* on the vectors 

1,2k


, ti is initial moment of time. 
To calculate the time of delay in the L-system we have 

to use this formula: 
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ij =

im x
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  is the initial current. So, if we 

will take into account the movement of the compound-
nucleus the advanced time vanishes also here. 

4. Оn Cross Sections of Neutron-Nucleus 
Scattering near a Couple of Overlapped 
Compound-Nucleus Resonances in the C- 
and the L-system 

 

Figure 4. The excitation function for 52Cr(n,n). 
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Figure 4a. The excitation function for 52Cr(n,n) with ϕ ≡0. 

We have calculated the excitation functions σ (E) for 
the low-energy elastic scattering of neutrons by nuclei 
52Cr and 56Fe and in the region of distorted isolated 
resonances Eres=50,5444 keV and Γ=1,81 keV, 
Еres=27.9179 keV and 0.71 keV, respectively. The values 
of the parameters for the amplitudes of the direct and 
resonance scattering separately in C-system for l=0 (and, 
naturally, without the Coulomb phases) in formulas (8)-
(13) were selected with the help of the standard procedure. 
The fitting parameter χ was chosen to be equal to 0.68π or 
0.948 π or 0.956 π or π, respectively. 

The calculation results were obtained with the help of 
formulas (8)-(13) in the comparison with the experimental 
data, given from [14]. They are represented in Figure 4-
Figure 7, respectively. Аnd the results of calculations 
performed by the standard cinematic formulas from C- 
into L-system (i.e. by the formulas (8)-(13) but with ϕ 
≡ 0, that is without diagram, depicted in Figure 3b) are 
represented in Figure 4а-Figure 5а. One can see that for ϕ 
≡ 0 the minima are not totally filled. 

 

Figure 5. The excitation function for 56Fe(n,n) 

 

Figure 5а. The excitation function for 56Fe(n,n) with ϕ ≡0 
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5. The Cross Sections of the Neutron-
Nucleus Scattering with Two Overlapped 
Resonances 

If we want to take into consideration the moving of the 
compound nucleus, we have to use another formula for 
cross section:  
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We can calculate phase Ф the same way, as in the case 
with the one resonance. 

Other values can be found this way:  
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Figure 6. The excitation function for 58Ni near two overlapped resonances with 3 745.6 0.73E = keV; Г = keV and 4 746,5E = keV;  

0,84Г = keV  

 
Figure 6a. The excitation function for 58Ni with ϕ=0 near two overlapped resonances with 3 745.6 0.73E = keV; Г = keV and 4 746,5E = keV;  

0,84Г = keV  
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At Figure 6, Figure 6a we can see theoretical function 
according to (18)-(22) and experimental data. The method 
of least squares was used to fit the function and 
experimental data. Experimental data where taken from 
[15]. After approximation we had such values of the 
parameters δi : 0δ 2.88= , 1δ 5.59= , 3δ 4.1= , 

4δ 2.34= , 5δ 2.6= , 6δ 4.75= . 
After approximation we had such values of the 

parameters δi : 0δ 3.72= , 1δ 0.51= , 2δ 3.01= , 

3δ 3.13= , 4δ 3.17= , 5δ 0.43= , 6δ 3.13= . 
After approximation we had such values of the 

parameters δi : 0δ 3.72= , 1δ 0.51= , 2δ 3.01= , 

3δ 3.13= , 4δ 3.17= , 5δ 0.43= , 6δ 3.13= . 

6. The Space-Time Description of direct 
And Sequential (via Compound-Nucleus) 
Processes in the Laboratory System of 
Nuclear Reactions with 3 particles in the 
Final Channel 

We shall study the interference phenomena in the 
laboratory system when two particles are simultaneously 
detected (in a sense that will be specified below) in the 
nuclear reactions with three nuclei (particles) in the final 
channel.  

The original idea was presented by Podgoretskij and 
Kopylov [18] for the two-particle emission (evaporation) 
from heavy nuclei. Here we consider the interference 
between prompt direct and delayed resonance processes in 
reaction of the type 

 x + X → y + z + U. (23) 
In Figure 7a, Figure 7b two possible mechanisms for 

reaction (1) are pictorially represented 

 
Figure 7a. Direct process reaction channel 

 
Figure 7b. Sequential process reaction channel 

The symbols A and B enclosed in boxes stand for 
detectors located at macroscopic distances r1 and r2 from 
the scattering point C0 . In Figure 7a the direct (like quasi-
free or so called one and two step direct) process of 
simultaneous prompt emission at point C0 of all the three 
final particles is described. Figure 7b presents delayed 
successive decay process with emission of particle y and 
formation of an intermediate excited nucleus Z* which 
subsequently decays into z and U at point C1, according 
the reaction 

 x + X → y + Z*, Z* → z + U (24) 
In Figure 7c the superposition of the direct and the 

sequential emission of one from the final particle is 
displayed in the same picture. For macroscopic distances 
and under the condition specified below angles 2θ  and 

2θ  as well as impulses k and k2 can be considered 
practically coincident. 

 

Figure 7c. Simultaneous representation of direct and sequential 
processes 

The asymptotic wave packet, near detectors A and B 
can be described by the following expression:  

3
( 0

( ) 1
1 2 3 1 2 3

3
( ) ( )1 0 11 2 3 1 2 3* 2

*
,

1 2

2 12 ,2 ,11

3

( , , , , , )

( , , , , , )

/ 2

( , )

k (k ) k (k ) k (k )

k ( ) (K K )

j
ik rj jC

L j
dir iE j

j
L ik r ikrC jC

jZ

Z res Z Z

ab

i x f fx

i fi f

f E E E e
e

f E E E
e

i

r r

C d g d g d f

d E E

θ θ θ

θ θ θ

ε ε

δ δ

=

=

−
=

+
=

∑

∑
+

− + Γ

Ψ → ∞

→ ×

× − −

 
 
 
 
 
 
 
  

∫ ∫ ∫

∫

/ .i 

(25) 

In this equation C is a normalization constant, gi, gf,1, 
gf,2 are amplitude weight factors describing the impulse 
spread of the incident particle x and that of the final 
particles y and z due to detectors resolution, 

 ( ) ( )L C
C Ldir dirf J f→=  (26) 

and 

 ( ) ( )( )
*
C CC

R C C L xy ZZ
f J J f→ →= Γ  (27) 
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are the amplitudes for direct and sequential processes (the 
subscriptions L and C refer to laboratory and center of 
mass system, respectively), ( )C

xyf  and ( )C
ZΓ  being the 

amplitude of the first step direct process x + X → y+ Z* 
and the reduced-width amplitude of the decay process Z* 
→ z + U respectively; *

Zε , ,res Zε  and ΓZ are the 
excitation energy, the energy and total width of the 
resonant state of the nucleus Z*; R CJ →  and C LJ →  are 
the Jacobians of the coordinate transformations from the 
Recoil system to the C-system and from the C-system to 
the L-system, respectively; r km are the distances from 
points m (m = C0,Ci) to particles k (with k = 1,2,3 
corresponding to y, z, U); Ei, ki and Ef, kf the total energies 
and impulses in the initial and final channels respectively; 
Ej = 2 2 / 2j jk m  is the kinetic energy of j-th particle, jθ  

and kj being the angle of motion (relative to beam, i.e. 
incident particle x, direction) and the wave vector of 
particle j, respectively. In expression (25) ( )i fE Eδ − and 

(K K )i fδ − take care of energy and impulse conservation. 
Expression (25) is written on the base of the general 
formalism described in [19] with application of the 
asymptotic stationary functions introduced in [16,17] and 
taking into account particle U explicitly. For the sake of 
simplicity the factor 1 1 1

1 2 30 0 0C C Cr r r− − − has been omitted as 

well as spin and internal coordinates. 
The factor e /fiE t−   can be rewritten as 

 
'
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

 (28) 

and the first three factors of the expression (25), combined 
with the factor (28), can be formally put in the integrals of 
eq. (25) as follows: 
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In order to perform the previous integrals a 
transformation from variables k1,2,3 to variables 
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is useful. Here only projections of k1,2,3 over the mean 
vectors 0

1,2,3k ≡ < k1,2,3 > are taken, the components of 
k1,2,3 remaining in other parts of (25). The factor gf1,2 can 
be assumed to have the form  
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f

c
g

E E i E
≈

− − ∆
 (30) 

and E∆  to be very small ( E∆ << ΓZ), as well as the 
energy spread of the incident particle x. Using a known 

result for a similar calculation (see, for instance, [20,21]), 
the wave function becomes 

 0abΨ ≈  (31) 
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and  
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Here 0 0
1,2,3 1,2,3 1,2,3v k / m=  , the initial time ti is defined 

by the phase of the amplitude weight factor gi; and the 
mean time τ  of the nucleus Z* motion before its decay is 
given by the well known expression: 

 * 2 2
,

/ 2
( ) / 4

Z

Z res Z Z
τ

ε ε

Γ
=

− + Γ

  (35) 

and 

 2,3 (2,3) ,r V τ⊥∆ =  (36) 

(2,3)V⊥  being the projection of the velocity of the nucleus 
Z* onto the direction of k2,3. The energy spread for 
particle U is of the order E∆ , according to energy-impulse 
conservation.  

Interference phenomena can occur only in case of 
simultaneous arrival (within the time resolution of the detectors) 
of particles y and z on A and B. The coincidence-rate 
intensity is described by a time integration of 

 *
1 2ab abj j

∧ ∧
Ψ Ψ  

( 1,2j
∧

being the flux probability density operator for 
particles y and z) over a time interval ∆ T, which is great 
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with respect to the time extension of the wave packets, 
and a spatial integration over particle U coordinates, i.e.:  
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where tmin is the smallest value among 
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packets. 
Under the standard experimental conditions, i.e. when 

 / 1Eτ∆ <<  (38) 
and 
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( T∆  is the time resolution of the coincidence scheme), it 
is possible to write 

 P = P0 + P1, (40) 
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(in arbitrary units), where 

 ,δ β φΦ = + +  (43) 
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dirZ
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∆r2,3 being defined by (36). 
The obtained results (40)-(43), with the incoherent sum 

P0 , the interference term P1 and the phase Φ, do evidently 
generalize the results for the L-system, obtained somewhat 
earlier by us in [9] for collisions with two-particle 
channels. Comparing these results with that obtained in a 
stationary model [16,17], the latter ones are confirmed by 
the present self-consistent space-time approach in the limit 
E <<ΓZ . The same conclusion is valid for the cases in 
which two intermediate excited nuclei are formed, i.e. 

 
*

,*
y Z y z Ux X
z Y z y U

 + → + ++ → 
+ → + +

 

under the conditions yE∆ << Γ  , and ZE∆ << Γ . 
Conclusions: The results (40)-(43) are firstly obtained 

in the space-time description of the interference between 
different (direct and sequential, containing the decaying 
compound-nucleus) mechanisms with three nuclei in the 
final channel. They are the clear generalization of the 
results for nucleon-nucleus and nucleus-nucleus collisions 
with two-particle channels, presented in [3,8], and can be 
easily generalized for the cases in which two intermediate 
excited (compound) nuclei are formed. Moreover, in the 
limit ∆E/ΓZ → 0 they factually pass to the correspondent 
stationary-model results as presented in [16,17].  

Finally, it is rather perspective and really topical to 
develop the much more complete approach to interference 
phenomena between the direct and various sequential 
processes in complex nuclear reactions. 

7. Conclusions and Perspectives 
Presented here time analysis of experimental data on 

nuclear processes permits to make the following 
conclusions and perspectives:  

1. The simple application of time analysis of quasi-
monochromatic scattering of neutrons by nuclei in the 
region of isolated resonances, distorted by the non-
resonance background, brings in C-system to the delay-
advance paradoxical phenomenon near a resonance in any 
two-particle channel. Such phenomenon of the time-
transfer delay in the time advance is usually connected 
with a minimum in the cross section, or zero in analytic 
plane of scattering amplitude (apart from the resonance 
pole) near the positive semi-axis of kinetic energies in 
lower non-physical semi-plane of the Riemann surface. 
Here this paradox is eliminated by the thorough space-
time analysis in L-system with moving C-system.  

2. Moreover, it is also revealed that the standard 
formulas of transformations from L-system into C-system 
are in-suitable in the presence of two (and more) collision 
mechanisms – quick (direct or potential) process when the 
center-of-mass is practically not displaced in the collision 
and the delayed process when the long-living compound 
nucleus is moving in L-system. And revealed by our group 
the additional change of the amplitude phase in C → L 
transformations now agree with the elimination of the 
paradox of passing the usual time delay in the time 
advance. The obtained analytic transformations of the 
cross section from C-system into L-system are illustrated 
by the calculations of excitation functions for examples of 
the elastic scattering of neutrons by nuclei 52Cr, 56Fe and 
58Ni near the distorted resonances in L-system.  

3. The presented here results of time analysis for the 
quasi-monochromatic neutron-nucleus scattering near the 
isolated resonances, distorted by the non-resonance 
background, can be easily generalized to the scattering 
nucleons by nuclei near two-three overlapped resonances.  

4. Of course, new formulas (8)-(13) and (18)-(22) can 
be also used for the improvement of the existing general 
methods of analyzing resonance nuclear data for the two-
particle channels in nucleon-nucleus collisions in L-
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system and, moreover, can be generalized for more 
complex collisions. 

5. Applying time analysis to elastic nucleon-nucleus 
with 2-3 overlapping compound-resonances, it is possible 
also to obtain the paradoxical phenomenon of transition 
decay in advance in C-system. But the behavior of 
amplitudes and durations can be certainly more complex 
than for an isolated resonance. Therefore the study of such 
cases can be more complicated that for an isolated 
resonance, and it has to be rather interesting and 
perspective. 

6. It is rather interesting the perspective to apply the 
results of the space-time description of direct and 
sequential (via compound-nucleus) processes in the L-
system of nuclear reactions with 3 particles in the final 
channel for concrete investigations, elaborations and 
calculations of many concrete nuclear collisions. 
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