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Abstract  Sensitivity of an estimator to departures from its distributional assumptions is a very important issue that 
is worth considering. The influence function, which describes the effect of an infinitesimal contamination at point, y, 
on the estimator we are seeking, standardized by the mass, ε, of the contamination, is bounded for the median. This 
property of the median is enjoyed by the other quantile points. Quantile regression inherits this robustness property 
since the minimized objective functions in the case of sample quantile and in the case of quantile regression are the 
same. This robustness is investigated by analyzing the quarterly implicit price deflator using quantile regression. The 
coefficients for the median and other quantiles remain unchanged even when outlier is added to the data. 
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1. Introduction 
An outlier is an extreme observation. Typically, points 

further than, say, three or four standard deviations from 
the mean are considered as ‘outliers’. Outliers occur 
frequently in real data, and can cause one to misinterpret 
patterns in plots, and may also indicate that model fails to 
capture the important characteristics of the data. Deleting 
outliers from the regression model can sometimes give 
completely different results. Thus the sensitivity of an 
estimator to departures from its distributional assumptions 
is a very important issue. The sample mean being a 
superior estimate of the expectation under normality of the 
error distribution can be adversely affected even by a 
single observation if it is sufficiently far from the rest of 
the data points, Cizek, [2]. On the other hand, the 
performance of the median can be superior in the presence 
of outlying observations; a point stressed by many authors 
including, remarkably, Kolmogorov, [9]. 

The modern view of this, strongly influenced by Tukey, 
[1], is framed by the sensitivity curve, or influence 
function of the estimators, and perhaps to a lesser degree 
by their finite sample breakdown points, [8]. The 
influence function, introduced by Hampel, [5], is a 
population analogue of Tukey’s empirical sensitivity 
curve. The idea of contaminating a distribution with a 
small amount of additional data has a long history in 
statistics and the investigation of robust estimators. 

The median has a bounded influence function, implying 
that the effect of an outlier on a sample median is bounded 
no matter how far the outlying observation is. This 
robustness of the median is of course overweighed by 
lower efficiency in some cases. Other quantiles enjoy 
similar properties. Quantile regression inherits this 

robustness property since the minimized objective 
functions in the case of sample quantiles and in the case of 
quantile regression are the same. 

2. Influence Function 
The influence function is the directional derivative of 

T(F) at F, and it measures the effect of a small 
perturbation in F on T(F), Essama-Nssah, [4]. Suppose T 
is a functional of F. ∆y is the probability measure which 
assigns mass 1 to {y}. The influence function is then 
defined by 
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It describes the effect of an infinitesimal contamination at 
the point, y, on the estimator: in mixed distribution, ε∆y + 
(1-ε)F, it is as if an observation is randomly sampled from 
distribution F with probability (1-ε) and from ∆y with 
probability ε. 
A. Influence Function for the Mean 

 ( ) ( ) ( )1e eT F ydF y T Fε ε= = + −∫  (2) 

Where ( )1 .eF y Fε ε= ∆ + −  
So the influence function 

 ( ) ( ); ; .IF y T F y T F= −  (3) 

This implies that, as y gets larger, its influence on the 
mean becomes larger. 
B. Influence Function for Quantile Points 

For the thτ  quantile points, the influence function, 
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This implies that the influence of contamination at y on 
the median, and generally on the other quantile points is 
bounded provided that the sparsity at τ is finite. 
C. Influence Function for Quantile Regression 

Following the idea expressed in Koenker and Portnoy, 
[8], the influence function can be extended to regression. 
Let F represent the joint distribution of the pairs (x,y). 
Writing dF in the conditional form 

 ( ) ( )dF dG x f y x dy=  (5) 

and again assuming that f  is continuous and strictly 
positive when needed we have, 

 ( ) ( )( ) ( )( )1ˆ ˆ, , , sgn FFIF y x F Q x y xτβ β τ− ′= −  (6) 

where 

 ( )( ) ( )ˆ .FQ xx f x dG xβ τ′ ′= ∫  

Again we see that the estimator has bounded influence 
in y since y appears only clothed in the protective sgn (·) 
function. This can also be illustrated in the following 
theorem, see [6]. 

Theorem 1: Let D  be an n n×  diagonal matrix with 
nonnegative elements and ( )ˆˆ ; ,y X y Xε β τ= −  be the 

residual vector of the thτ  quantile regression fit with 

( )ˆ ; ,y Xβ τ  the thτ  quantile regression estimate of the 
model i i iy x β ε′= + , y  the vector of observed dependent 
variable and X  the design matrix. Then 

 ( ) ( )( )ˆ ˆ ˆ ˆ; , ; ; , , .y X X y X D Xβ τ β τ β τ ε= +  (7) 

The above theorem indicates that the quantile 
regression estimate is not affected by any change in the 
values of the dependent variable for some observations as 
long as the relative positions of the observation points to 
the fitted plane are maintained. Intuitively, the breakdown 
point of an estimator is the proportion of incorrect 
observations (arbitrarily large observations) an estimator 
can handle before giving an incorrect (arbitrarily large) 
result. The higher the breakdown point of an estimator, the 
more robust it is. The median has a breakdown point of 
50%. 

3. Analysis and Discussion 
To demonstrate the robustness of quantile regression to 

outlying observations, we consider data from Central 
Bank of Nigeria, [3], with the Quarterly Implicit Price 
Deflator as the dependent variable, and Agriculture, 
Industry, Building and Construction, Wholesale and Retail, 
Services, as independent variables. The data cover from 
2000 to 2012. R package is used for this analysis, and the 
result is as follows: 

Table 1 and Table 2 give the OLS and quantile 
regression results for the original data. X1: agriculture, x2: 
industry, x3: building and construction, x4: wholesale and 
retail, x5: services. 

Table 1. Ordinary Least Squares Estimates 
(intercept) 246.33071 

X1 0.25348 

X2 0.19621 

X3 0.05155 

X4 0.11198 

X5 0.35762 

Table 2. Quantile Regression Estimates 
 tau=0.1 tau=0.3 tau=0.5 

(Intercept) 168.88776 234.89627 256.10545 

X1 0.29482 0.22849 0.21231 

X2 0.18295 0.19922 0.20529 

X3 0.04120 0.02064 0.03499 

X4 0.15598 0.14307 0.13905 

X5 0.31105 0.36521 0.35490 

Table 3.Ordinary Least Squares Estimates 
(intercept) -520.6084 

X1 2.5606 

X2 -0.2934 

X3 -0.2558 

X4 0.3747 

X5 -0.5697 

Table 4. Quantile Regression Estimates 
 tau=0.1 tau=0.3 tau=0.5 

(Intercept) 168.88776 234.89627 256.10545 

X1 0.29482 0.22849 0.21231 

X2 0.18295 0.19922 0.20529 

X3 0.04120 0.02064 0.03499 

X4 0.15598 0.14307 0.13905 

X5 0.31105 0.36521 0.35490 

An outlier is added to the data on the implicit price 
deflator by multiplying an observation by 5, and the 
resulting data analyzed. Table 3 and Table 4 give the OLS 
and quantile regression result for this contaminated data. 

Again an outlier is added to the original data on the 
implicit price deflator by multiplying another observation 
by 7, and the resulting data analyzed. Table 5 and Table 6 
respectively give the OLS and quantile regression of the 
data. 

It is clearly seen from the results that the estimates for 
the conditional mean changed drastically when an outlier 
is introduced to the original data, giving entirely different 
representation of the original data, with industry, 
wholesale and retail, and services showing negative 
relationship to the implicit price deflator. However, the 
quantile regression results remain the same even in the 
presence of the outlying observations. 
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Table 5. Ordinary Least Squares Estimates 
(intercept) 515.9725 

X1 0.2045 

X2 -0.2255 

X3 -2.3464 

X4 3.0652 

X5 0.4680 

Table 6. Quantile Regression Estimates 
 tau=0.1 tau=0.3 tau=0.5 

(Intercept) 168.88776 234.89627 256.10545 

X1 0.29482 0.22849 0.21231 

X2 0.18295 0.19922 0.20529 

X3 0.04120 0.02064 0.03499 

X4 0.15598 0.14307 0.13905 

X5 0.31105 0.36521 0.35490 

4. Conclusion 
The influence function is an indispensible tool, 

designed to measure the sensitivity of estimators to 
infinitesimal perturbation of the nominal model. Quantile 
regression, introduced by Koenker and Basset, [7], inherits 

its robustness property from median regression, and can 
produce good and reliable estimates even in the presence 
of extreme outliers. 
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