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Abstract This paper introduces the fractal theory into composite reservoir with double-porosity, and establishes
the radial seepage model of fractal composite reservoir with double-porosity. Based on the similar structure theory of
solutions for the boundary value problem of differential equation, the similar structure expression of solutions can be
obtained in Laplace space. The similar structure theory of solution which avoids the complex calculation is used to
solve the model, meanwhile, the similar structure expression of solution reflects the influence of different parameters
for the bottom pressure.
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1. Introduction

Fractal theory was born in the field of mathematics, and
it is a good tool to describe irregular objects. Chang and
Yortsos [1] introduced the fractal theory into the study of
reservoir seepage in 1990 for the first time, producing
many studies about the application of the fractal theory in
well test model. Li [2,3,4] introduced the fractal theory
into the dual-porosity reservoir model in well test analysis
under three outer boundary condition(infinite, closed,
constant pressure), and obtained the solution of
dimensionless reservoir’s pressure and dimensionless
well-bore’s pressure in Laplace space. Deng and Li [5,6,7]
used the fractal dimension and the fractal index to
describe features of the fractured medium and the rock
matrix in the fractal composite reservoirs, and established
an analysis mathematical model of well test with the well-
born storage and the skin effects, and obtained a formula
of Laplace space solution on dimensionless reservoir’s
pressure and dimensionless well-bore’s pressure.

In this paper, the fractal theory is introduced into the
composite reservoir with double-porosity, establishing the
radial seepage model of fractal composite reservoir with
double-porosity, and obtaining the solution of the model
in Laplace space.

2. SSM the Boundary Value Problem for
Composite Modified Bessel Equations

In order to solve the reservoir model, this paper
introduces SSM [8] (The Similar Structure Method) for

solving the modified composite Bessel equations’
boundary value problem:
X2yl + Axy; —Bxly; =0, (a<x<c); (1)

x2y§+A2xy§—Bsz2y2 =0, (c<x<h); (2

[Eyy + 1+ EF)yily—a = D; (3
Yileee =M Y2l (4)
Vily_e =nyali_c: ()

[Gy, + Hys]y—p =0. (6)

Where A, B;,C;,D,E,F,G,H ,a,b,c,mand n are
all known as real numbers and satisfy a<c<b, D=0,
G2+H2%0,B,>0,C;#0 (i=12).

The SSM steps are presented as follow.
Step 1. Find two linearly independent solutions of

x2y!+ Axy! —BixCiy; =0, as follows [9];
XKy (kix), x7 1y () i=1,2 )

Where o; =(1-A)/2, £=Ci/2, k=28 /Ci
vi =(1-A)/C; , and I\,i OF K\,i () are modified Bessel
functions of order n [10].



American Journal of Applied Mathematics and Statistics 81

Step 2. Guide function (p(i)’o(x,g) is defined by
XKy (ki x/1) and x* Iy, (ki xPiy:

Ky (ki bi Ay (K Bi
(CRORMEC LN

b0 (%,2) = (x2) .
PO g G oK, e

If we define
Wh (% £,) = Ky () 1y () + ()" 1 (0K (et) (9)
where h, | are real numbers, q;éyo (x,&) can be rewritten as

oho(xe)=(xe)py v A e k). 0)

Then, calculate respectively the partial derivative of
(p(i,’o(x,s) for x,¢:

[ 0 j
X, &) = — X,
P1o(X,€) p @0,0(X,€)

. ai = B Vo v (Xﬁi ’gﬂi nki) 11
_ (Xg)a' X iV

ki By 1, 0P KG)

P01(X &) =—@p (X&)
oe

. ai — BV Wy v (Xﬂi ,gﬁi lki) (12)
— (xg)“ e iV

'f_kiﬂigﬁi _ll//vi Vi 71(X'Bi 18ﬁi lki)

2

i 0°
X, &) = —— X,
Pr1(x€) pVy @0,0(X,€)

a; = BV
o = BV X

&

Yvivi o k)
. _ 1
(1o o, 00 k|| P
= (xe
ai — Bivi
el

l//Vi Vi 71()(ﬂi ' gﬁi ' ki )

ki ix/h _1‘//vi Ly LA k)

Step 3. The similar kernel function of right region is
defined, as follows:

Gego(x,b)+HpZy(x,b)
Gy (c,b) + Hefy(c,b)

The similar kernel function of left region is defined, as
follows:

D5 (x) = (c<x<b). (14)

_ P (€)1 (X, )~ (%.C)
md, (c)¢ts(a,c) ~ gt o (@, c)

Step 4. Obtaining the similar structure formula of
solutions, they are

(a<x<c).(15)

@4(X)

1 . 1
E+# F+ch(a)
F+®(a)

(16)

y1=D- @y (x)

Yy = D. 1 . 1
E +# F+ (D]_(a)
F +CD1(a) (17)
(ﬂ(l),l(C,C)

. NO)
mad, (c)eis(a,c) — gt (a,c) 2

3. The SSM for Solving the Radial
Seepage Model of Fractal Composite
Reservoir with Double-porosity.

The dimensionless mathematical model of fractal
composite with double-porosity with radial seepage in

Appendix A. Taking the Laplace transform for the
dimensionless mathematical model as follow:

BijD(fDJ):f;Oe_ZtD Pijp (o tp)dtp, i=12 j=f,m;
Pup (@) =, €70 pup (tp)dto;

ap(2) = [ e *Pap (tp)dtp.

We can write the model in Laplace space as follows:
The basic seepage equations:

,— _
dpiip W dpiip
drp?2 1o drp

l<rp<p

%)
(1-w) zrpAm 4 4

af—
-Xu(2)p " Pipp =0 (18)

o l<rp<p (19

Pimp =

— _
d“pyp +7_2d P2rp
er2 rD er
RD > rD > ﬂ
A
o-mzrgzm + A

02 —
Z(Z)rD p2]‘D=0 (20)

BZmD = 62 D RD >1Ip > ﬂ (21)

_CDZB“D (rp,2)

dpyp (o, 2) ‘rD=1 ==Up
drp

61fD(ﬂ:Z) =61fD(ﬁ’ 2),

dBlfD (rp,2)
drp

(22)
+(1+Cpz-S)-

(23)

D=4
dp,ip(p.2)

_ B22-B21
v i

D=

dpyip (o, 2)
er

Pyp(0,2)=00r -0

=R (24)

or BZfD(RDvZ):O
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Where:
D*1m-D™1 ¢
1-w)r,
Xl(z):z[a)+ﬂl( ©)p ] (25)
/11+(1—a))rglmz
m D*om-D*2 ¢
OiOml, 2+ (o o A
XZ(Z): fOm'D ( f m'D )22(26)

amzrgzm + 2
Equations (18), (20), (22), (23) and (24) comparing
with (1)~(6) result in
Yi = Pim:X=1p; A =7 B = X (2);
E=—CDz;F=—S;D=—aD;m=1;
n=y; P2 PAa=1c=pi=12
G=1,H=0,b=w or G=1, H=0, b=Rp or

G=0, H =1, b=Rp representing there types of outer

boundaries, respectively. So we can construct similar
structure formula of dimensionless reservoir’s pressure in
Laplace space, as follows:

B]_fD (rp,2)
a 1 1 (27)
=q @,(rp, 2)
D Cpz—— L ®2)-3
D,(1,2)-S
Bsz(rD,Z)
3 1 1
Dch— 1 @1z2)-5
D,(1,2)-S
- +0; 1 2 2
5 orf+ orf+ 2\/)(7
(2 82 0
ﬂ ‘//vl,vl—l D ’ﬂ ,elf )
_ o2 = 'q)z(rD,Z)
_ 24X
7i By, B2 ,elfz)
At
~D,(B,2)X1 8 2
2
M e
: l//vl -1n-1 (11 ﬁ ) )
¢91f +2
) (28) )
From (19) and (21), we can obtain
— ﬂ'l —
Pimp (. 2) = q
1mb 1D (1—0))Znglm +ﬂ“l b
1 1 (29)
: @, (rp. 2)
CDZ— 1 q)l(l, Z)—S
®,(1,2)-S
Pamp (D 2)
S -, ! L (0
O'mzrgzm +ﬂ.2 CDZ 1 (Dl(:L Z)_S

S ®,(1L,2)-S

Ly+0f

5 +2 O +2
BT vale? B2V
v, v1-1\'D ' ’elf +2

— —-®,(ry,2) (30)

Of+2 2\/71)

7fﬁﬂ227ﬂ21'//v1—1,v1 Lp 2 a3
1f

Ot
~0,(B,2)\[X, B 2
61 +2
o

’Hlf +2

: ‘//vlfl,vl—l (1’ ﬁ

Taking the Laplace transform about tp for (A.4), and

using (27), the dimensionless well-bore’s pressure can be
obtained in Laplace space, as follow:

EwD (2) :aD 1 1 (31

Cpz—— -
D™ o,1,2)-5

Where ®,(rp,z) is outer region similar kernel function,
and @ (rp, z) is inner region similar kernel function. They
are the following.
For EZfD (e0,2) =0, using the properties of modified
Bessel function lim 1,(x) =, lim K, (x)=0,(14) and
X—0 X—0
(15), we can obtain the similar kernel function as follows:

@, (1p,2)
Tr

o +2
2 K 72“x2r 2

o) v2(92f+2 D

02§ +1-y2

~JX28
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2
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Dy (1p,2) = -2
VX1

glif O f+2 tf+2
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ZJZ) (33)
'9” +2
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I
P 'D=Rp
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@, (1p,2)

172 byf+2
2
2 2
D Vi, (b Rp

Op§ +2

2%,

"0, 2 (34)

Oy +2 Op 5 +2
2 R, 2 27\/)(2)

Oy +1-yo

-J%.8
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1-n
2

n
Dy (rp,2) = -2
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Dy (BN X1lp? Wyl 2 B 2 'm)
X

2\/71) (35)
'9“ +2

Ot 2
af+ » ,—xl

2 2
CDZ (ﬁ)\/xilﬂ l//vl—l,vl—l(lvﬂ ) Hlf 42

Of+2
2,/ X
_ Ba2-F21 18 2 N1
7eh Vi 47 Y 2

tt+2 O +2
_},fﬁﬂzz*ﬂzly,vlyl(rD 2 B 2

)

For p,ip(Rp,2)=0,

@, (1p,2)

Ir Opf+2  6pp+2

r v, (5 2 Ry 2 ,——5)
D vo,vp=-1\'D D Hzf +2 (36)
- 0y +1-79 Oyt +2 Op¢ +2
/ P 2 2 X,
-\ X2 B sz—l,vz—l(ﬁ Rp )
Oy +2
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2

n
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T
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X
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2%
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Where
Vi = (L-7)/(G +2), i=12

4. Conclusions

For the radial seepage model of fractal composite
reservoir with double-porosity, introducing dimensionless

variables, using the Laplace transform, structuring
similarity kernel functions (32)~(37). Then we can obtain
the model’s solutions by using SSM, and know the
solutions of dimensionless reservoir’s pressure (27)~(30),
dimensionless well-bore’s pressure (31) under three outer
boundary conditions (infinite, closed, constant pressure)
have similar formula in Laplace space. The formulas can
clearly shows that well-bore storage coefficient and skin
factor generated influence for reservoir pressure and
bottom hole pressure.
Appendices
A. Mathematical Model of Fractal Composite
Reservoir with Double-porosity with Radial Seepage.
In order to study the radial seepage model of fractal
composite reservoir with double-porosity, the main
assumptions for fluid flow in porous media as follows:
Ignoring the influence of quadratic pressure gradient term,
gravity and capillary pressure; Fluids are of low
compressibility and single-phase; The flow follows
Darcy's law; Radial seepage which has one production;
Both consider the well-bore storage and the skin factor.
The distributions of the porosity and permeability of
inner and outer region of reservoir are defined as follows

[1]:
r Djj—d
2 = pwij ()"
r.W

D*ij —9”' —d

r . .
Kij = KWij (r_) (I =12; 1= fvm)
w

where D*, d, 6, r and r, are fractal dimension,

Euclidean dimension, fractal index, radial distance, and
well radius respectively.

The radial seepage model of fractal composite reservoir
with double-porosity is obtained:

The basic seepage equation:

0% pry . *1f — O —d+10ps

or? r or
K *, _D*. _ _

tay wim (L)(D 1m—D*11 )—(0Im @f)(plm_plf)
lef fw

Pt Gy r 0
o I yaf —plf y Ty <T < fBr,,t>0;
K\Aﬂ.f rW ot

C 0
wW”_%(rL)&lm LA LYY (P1m = P1¢) =0,

Kwaf fw ot t
fw <T < pBr,,t>0;

GRY . D*y¢ =6t —d +10py¢
or? r or
Kwim () (P2m D21 )~(Com~C21)

+O!1
KV\/lf M

(P2m — P2+)

HoPy2 1 Cy 0
:M(L)QZ]( £7 R>r>ﬂrw,t>0;
szf Iy ot

Kwat  Tw at H2

R>r> pr,,t>0.

Initial condition:
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Pif (1,0) = P (r,0) = P21 (1, 0) = P2 (r,0) = Po;

Inner boundary condition:

Py £
= -Sr— ,
Pw [plf ar
r=rny
D* s —6; ¢ —d+1 OP1 d
(r 1f 9_|_f ) — Iul (Bq+C pW),
or 2zKq¢h dt
r=ry
Convergence condition:
Pry (ﬁl’w,t) = P2 (ﬁrw’t):
K f (L)D*lffg_]_ffd oprt
lul I’W ar i’:ﬂrw
_ Kuazs (L)D*Zf—ng—d P2
H r-W or |'=,8|'W1

Outer boundary condition:
1). Infinite pressure outer boundary condition:

P2t (20,1) = Pam (°0,1) = Po;
2). Closed pressure outer boundary condition:

P2 |
or

_ 5p2m| =0;
|r=R or |r=R

3). Constant pressure outer boundary condition:
P2t (R,t) = pom (Rt) = po.

The following dimensionless parameters can be defined
to simplify the formulation:

Piip =————=[po — p;j (r,O)];
ijD BQeﬂl 0 ij
PwD Ba. 1 [Po — Pw(t)]
t r R
e w T
Kwat . Kuat
re ==/ [—1;
H2 il
Ky st
tp = wlf

> ;
[(DV\ﬂ.f Ct2 f + (valmCth ]/Jlrw

C

Cp =
57[[¢Wlf Ctzf + ¢WlmCt2m ]hrw2

2 Kyim . WL f
A = ajly, ;0=
Kwif P f Ct1 ¢ T Pwim Ctlm

Kt HoPw2 t Ctz f

2 1
Kwzt 1al@nasCyy +PmamCrypy IR

Of =

Kwe f ﬂ2¢w2mCt2m

2 1
Kwzf et Cy ¢+ PuamCrypy It

Bi1 = D%t =6 : fiz = D¥im — Oim;
i = D*if _9|f —d +1,(| =12 J = f,m).
The dimensionless radial seepage model of fractal

composite reservoir with double-porosity is obtained:
The basic seepage equations:

2
o“Piip +Aap1fD
orp? o O
o1t OPrip
= a)I’D y
atp
l<rp<pB, tp >0 ;

0
(-0 S+ 4 (P~ o) =0

+ 427 A (o — i)

1<rD<ﬂ, tD>0; (A]_)

2
o“ P2t +7_26p1fD
o> o Op
%t OP2tD
i
D
RD>I‘D>ﬁ, tD >0 )

+ P22 (pyrn — Potp)

®m api

omd +A2(Pam — P2¢) =0,

Rp>rp > pf, tp >0.
Initial conditions:
P1ip ('p+0) = Pimp (15, 0)
= P21p(5.0) = Pomp (., 0) =0;

Inner boundary conditions:

(A.2)

oP1fD
6rD

, (A.3)
D=1

pwp (tp) =[P1io —Srp ]

P1ip
6I‘D

~ 4o (tp)~Cp PuD],  (A.4)

71
(b dtp

)

=1
Convergence conditions:
Piip (Bitp) = P2o (Btp),

oP1fD
orp

(A.5)

=y, pP2 P2 P21
orp

D=

Outer boundary conditions:
1). Infinite outer boundary conditions:

D=p

P p (%,tp) = Pomp (0, tp) = 0; (A.6)

2). Closed outer boundary conditions:

P2 D
6rD

_ 9P2mp

=0 A.7)
'D=Rp

"5=Rp 6rD
3). Constant pressure outer boundary conditions:
P (Rp.tp) = Pomp (Rp.tp) =0.

Nomenclature

(A.8)
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p :Reservoir pressure, MPa ; pg :Initial reservoir

pressure, MPa ; C :Well-bore storage
coefficient, m®*/MPa ; S :Skin factor; C, :Total
compressibility, 1/MPa ; B :Formation volume

factor, m3/m®; K : Permeability, zm? ; ¢ :Porosity, % ;
4 Viscosity, mPa-s; r:Radial distance, m; R :Radial
distance of the outer boundary, m; ¢ :Production rate or

injection rate, m3/d ; t :Time, h ; S :The internal and
external interface radius; D* :Fractal dimension;
d :Euclid dimension; @ :Fractal index; z : Laplace space
variable.

Superscript

: Laplace domain.
Subscript
i=1:Inner region; i=2 :Outer region; j= f :Fissure
media; j =m :Matrix block; w :Well-bore; we :Well-bore
effective; D :Dimensionless.
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