
American Journal of Applied Mathematics and Statistics, 2015, Vol. 3, No. 2, 49-53 
Available online at http://pubs.sciepub.com/ajams/3/2/1 
© Science and Education Publishing 
DOI:10.12691/ajams-3-2-1 

 

A Fifth Order Compact Difference Method for 
Singularly Perturbed Singular Boundary Value 

Problems  

H.S. Prasad1, Y.N. Reddy2,* 

1Department of Mathematics, National Institute of Technology, Jamshedpur, INDIA 
2Department Mathematics, National Institute of Technology, Warangal, INDIA 

*Corresponding author: ynreddy_nitw@yahoo.com 

Received November 17, 2014; Revised March 01, 2015; Accepted March 04, 2015 

Abstract  In this paper, we have developed a fifth order compact difference method for a class of singularly 
perturbed singular two-point boundary value problems. To avoid the singularity at zero a terminal boundary 
condition in the implicit form is derived. Using this condition as one of the boundary condition we solve the 
singularly perturbed singular two-point boundary value problem by the fifth order compact difference scheme. 
Numerical results are presented to illustrate the proposed method and compared with exact solution. 

Keywords: singular boundary value problem, singularly perturbations, singular point, boundary layer, finite 
differences 

Cite This Article: H.S. Prasad, and Y.N. Reddy, “A Fifth Order Compact Difference Method for Singularly 
Perturbed Singular Boundary Value Problems.” American Journal of Applied Mathematics and Statistics, vol. 3, 
no. 2 (2015): 49-53. doi: 10.12691/ajams-3-2-1. 

1. Introduction 
Singularly perturbed singular boundary value Problems 

arise in many areas of science and engineering such as 
heat transfer problem with large Peclet numbers, Navier-
Stokes flows with large Reynolds numbers, chemical 
reactor theory, aerodynamics, Reaction-diffusion process, 
quantum mechanics, optimal control etc. The numerical 
treatment of singular singularly perturbed boundary value 
problems present some major computational difficulties 
due to the boundary layer behavior of the solution and the 
presence of singularity. It is well known fact that the 
solution of these problems exhibits a multi scale character, 
that is, there are thin transition layer(s) where the solution 
varies rapidly, and while away from the layers (s) the 
solution behaves regularly and varies slowly. 

In general, the classical numerical methods fail to give 
reliable results for these problems because of the layer 
behavior and also because of singularity. Detailed theory 
and numerical treatment of these problems is available in 
the Ref. [1-13]. Rasidinia, Mohammadi and Ghasemij [5] 
presented a numerical technique for a class of singularly 
perturbed two point singular boundary value problems on 
uniform mess using Polynomial cubic splines. Li [6] 
described a computational method for solving singularly 
perturbed two-point singular boundary value problem in 
which exact solution is represented in the form of series in 
reproducing kernel space. Kadalbajoo and Aggarwal [17] 
presented a Fitted mesh B-spline method for the solution 
of a class of singular singularly perturbed boundary value 

problems. Mohanty and Jha [10] presented a class of 
variable mesh spline in compression methods for 
singularly perturbed two point singular boundary value 
problems. Mohanty and Arora [11] proposed a family of 
non-uniform mesh tension spline methods for the solution 
of singularly perturbed two-point singular boundary value 
problems with significant first derivatives. Mohanty et. al. 
[12] suggested a Convergent spline in tension methods for 
the solution of singularly perturbed two-point singular 
boundary value problems. Mohanty, Jha, and Evans [13] 
presented a Spline in compression method for the 
numerical solution of singularly perturbed two point 
singular boundary value problems. For a detailed 
analytical and numerical discussion on singularly 
perturbed problems one may refer to the books and high 
level monographs by: Bender and Orszag [1], Miller et. al. 
[3], Kevorkian and Cole [4], Hemkar et. al. [8] and 
O'Malley [9].  

In this paper, we have presented a fifth order compact 
difference method for a class of singularly perturbed 
singular two-point boundary value problems. To avoid the 
singularity at zero a terminal boundary condition in the 
implicit form is derived. Using this condition as one of the 
boundary condition we have solved the singularly 
perturbed singular two-point boundary value problem by 
the fifth order compact difference scheme. Numerical 
results are presented to demonstrate the applicability of 
the proposed method and compared with exact solution. 
We have also presented the least square and maximum 
errors for the problems considered. It is observed from the 
tables that the present method approximates the exact 
solution very well.  
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This paper is organized as follows: Section 2 presents 
the way of finding terminal boundary condition in the 
implicit form and the description of the fifth order 
compact difference scheme. Numerical experiments are 
performed by considering four standard example problems 
and presented the computational results in the section 3, 
show the accuracy and efficiency of the method. In the 
section 4, based on the numerical experiments performed, 
and conclusions are presented.  

2. Description of the Method 
Consider singularly perturbed singular boundary value 

problems of the form:  

 ( ) ( ) ( ) ( ) ( ), 0 x 1,kLy y x y x q x y x r x
x

ε ′′ ′≡ + + = ≤ ≤  (1) 

with boundary conditions 

 (0)  y α=  (2a) 

and 

 (1)y β=  (2b) 

where 0 1ε< << , q(x), r(x) are bounded continuous 
functions in (0, 1), q(x) > 0 and ,α β  are finite constants. 
We know that, if a function is analytic at a point 

,0xx = then the point 0x  is said to be an ordinary point. 

The point 0xx = is a singular point if the functions fail to 

be analytic at .0x Such problems are called singularly 
perturbed singular boundary value problems. 

To avoid the singular point ‘0’, we introduce δ , a 
small positive deviating argument, where 0 1δ< << . 

Using Taylor series expansion in the neighbourhood of 
the point x , we have 

 
( )

( )

2

2

( ) ( ) ( )
2

2 2 ( ) 2 ( )
( )

y x y x y x y x

y x y x y x
y x

δδ δ

δ δ

δ

′ ′′− = − +

′− − +
′′ =

 (3) 

Substituting ( )y x′′  in (1), we get  

 ( ) ( ) ( )p x y q x y r x′ + =  (4) 

where  

 
2 2

2

( ) 2 ( ) , ( ) 2 ( ) ,

( ) ( ) 2 ( )

p x a x q x b x

r x f x y x

εδ δ ε δ

δ ε δ

= + = − +

= − −
 

At x δ= , Eq. (4) becomes 

 ( ) ( ) ( )p y q y rδ δ δ′ + =  

We use this equation as the terminal boundary 
condition. 

Then the considered boundary value problem (BVP) (1) 
with (2a) and (2b) over [δ , 1] is given by  

 ( ) ( ) ( ) ( ) ( )ky x y x q x y x r x
x

ε ′′ ′+ + =  (5) 

with boundary conditions 

 ( ) ( ) ( )p y q y rδ δ δ′ + =  (6) 

and 
 (1)y β=   (7) 

Now we solve this boundary value problem by the fifth 
order compact difference scheme described below.: For 
this we consider the first order linear system 
corresponding to the above BVP as:  

 ( ) ( ), [ , ]Y A x Y R x x a b′ = + ∈  (8)  

with the boundary conditions 

 1 2( ) ( )B Y a B Y b D+ = ,  

where 1,A B  and 2B  are 2 x 2 matrices and , ,Y R D  are 
two dimensional vectors. 

Now we divide the interval [ ,1] [ , ]a bδ ≡  into N  equal 
parts with constant mesh length .h  Let 

0 1 2, , ,..........., Na x x x x b= =  be the mesh points. Again 
we divide each subinterval 1[ , ]i ix x +  into four equal 
smaller sub intervals. Let 1 2 5, ,.....,t t t are the grids in the 
subinterval 1[ , ]i ix x +  and corresponding values of the 
variables and its derivatives are 1 2 3 4 5, , , ,  and Y Y Y Y Y  

1 2 3 4 5, , , ,Y Y Y Y Y′ ′ ′ ′ ′ . 
By considering Taylor’s expansions of 1 2 3 4 5, , , ,  Y Y Y Y Y  

at the fractional grid t3 (Peng [2]), we have 

 
1 5

( 1) 6 (6)
3 6 3 3

1

( ), 1, 2,3, 4
( 1)!

n
n n n

j j
j

h
Y a Y a Y O h Y n

n

+
+

=

′= + + =
+

∑  (9) 

where 1
4

i ix x
h + −
=  and the coefficients n

ja  are given by: 

  

1 1 1 1 1 1
1 2 3 4 5 6

2 2 2 2 2 2
1 2 3 4 5 6

3 3 3 3 3 3
1 2 3 4 5 6

4 4 4 4 4 4
1 2 3 4 5 6
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By taking the Taylor’s series expansions of 

1 2 3 4 5, , , ,Y Y Y Y Y′ ′ ′ ′ ′  at the grid point 3t  and substituting (9), 
we get  

  
5

(6)5
6 3 3

1

1 ( ) for k 1, 2,4,5k k
k j j

j
Y b Y b Y O h Y

h =

′ ′= + + =∑ (10) 

where 

 

1 1 2 3 4

2 1 2 3 4

4 1 2 3 4

5 1 2 3 4

4 12 32 80 ( 6)

2 3 4 5 ( 6)

2 3 4 5 ( 6)

4 12 32 80 ( 6)

1 ,  0
( )

0  , 0

j j j j j

j j j j j

j j j j j

j j j j j
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b a a a a Sgn j
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x
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x

= − + − + + −

= − + − + + −

= + + + + −

= + + + + −

≥ 
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The variable Y  and its derivative Y ′ at grids 
1 2 5, ,......t t t  subject to equations 

 , 1, 2,3, 4,5j j j jY A Y R j′ = + =  (11) 

where jA and jR  are values of A and R at grids jt . 
Substituting (11) in (10), we get six linear algebraic 

equations with respect to five unknown variables 
1 2 3 4 5, , , ,  Y Y Y Y Y . 

By eliminating 2 3 4, ,  Y Y Y from the above equations a 
relation between 1 5 and  Y Y can be obtained as follows:  

 1
1 1 i 0,1,2,.....N-1 i i i i iS Y T Y F for
h h ++ = =  (12) 

where  and  are 2 x 2  matrices and  i i iS T F  is a two 
dimensional vector. The relation (12) is a fifth order 
compact difference scheme of Eq. (8) in the i − th 
subinterval. By assuming  

  

1 5 5 1
1 2 4 2 4

5 1 1 5 1
1 5 4 5 4 4 5 1

5 1 1 5 5 1 1 5
2 3 4 3 4 6 4 6 4 3 1

5 1 5 1 5
3 1 4 4 1 4 1 1
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5 1 1 5 5
4 1 2 1 2 2 1 2
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We get  

  
11 7 8 10

11 9 8 12

3 11 8 4

,
,

i

i

i

S W W W W
T W W W W
F G W W G

= −

= −

= −

  

Now the system (12) can be written in matrix form as: 

  

0 0 0

1 1 1

2 2 2

1 1 1

   ............................       
         ........................     
               ..................    

 .........................       N N N

S T F
S T F

S T F

S T F− − −

 
 
 
 
 
 
  

  

Solving the above system together with the given 
boundary conditions (6) and (7), we will get the solution. 

In the boundary condition (6), we replace the ( )y δ′ by 
the following fifth order approximation which is obtained 
by the expansion  

 

2

3 4 5

( ) ( ) ( ) ( )
2

( ) ( ) ( )
3! 4! 5!

iv v

y x y x y x y x

y x y x y x

δδ δ

δ δ δ

′ ′′− = − +

′′′− + −

 (13) 

We calculate the required derivatives from the 
differential equation and at x δ=  we write Eq. (13), so 
that we have ( )y δ′  in terms of ( )y δ . Substitute this 

( )y δ′  in Eq. (6) so that we have the boundary condition 
for ( )y δ . 

3. Numerical Experiments 
To demonstrate the applicability of fifth order compact 

difference method computationally, we consider four 
singularly perturbed two-point singular boundary value 
problems. These problems have been chosen because they 
have been widely discussed in the literature and because 
exact solutions are available for comparison.  

Example 1. Consider the singularly perturbed singular 
boundary value problem 

 2(1/ ) (1 ) ( ),   0 x 1y x y x y f xε ′′ ′− + + + = < <  

The exact solution of this problem is 2( ) exp( )y x x=  
The numerical results are shown in Table 1 and Table 2 
for 0.01ε = and 0.001ε =  respectively.  

Example 2. Consider the following singularly 
perturbed singular boundary value problem: 

 1 0y y y
x

ε ′′ ′− − =  

With boundary conditions (0) 1, (1) 1y y= =  The 
uniform solution of this problem is  

 

( )

( ) ( )

22
2 /2

2
1/2

1
( ) 1

4

4
1 1

2

1
where  

x

X

x
y x e

X X
e e

x
X

ε

ε

ε

−

− −

−
= +

−
+ − −

−
=

 
 
 
  

 
 
 
 

 

The numerical results are shown in Table 3 and Table 4 
for 0.01ε =  and 0.001ε =  respectively.  

Example 3. Consider the following singularly 
perturbed singular boundary value problem where q(x) is 
also not continuous at x = 0  

 2
1 1 2 2 3y y y
x xx

ε ε′′ ′+ + = − −  

subject to boundary conditions (0) 0, (1) 0y y= = . The 

exact solution of this problem is 2( )y x x x= − . 
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The numerical results are shown in Table 5 and Table 6 
for 0.01ε = and 0.001ε =  respectively.  

Example 4. Consider the following singularly 
perturbed singular boundary value problem 

 1 0,     0 1,y y y x
x

ε ′′ ′+ + = < <  

with boundary conditions 1(0) 0,   (1) exp
2

y y − = =  
 

 

whose exact solution is not known. This problem has 
regular singularity at x = 0 and boundary layer also at x = 
0. However, the condition on y (0) is so weak that the 
solution does not exhibit a boundary layer at x = 0 as 

0ε +→ , even though 1 0
x
>  for x > 1. The numerical 

results are shown in Table 7 for 0.01ε = and 0.001ε =  
respectively.  

Table 1. Numerical solution of example 1 with 0.01ε =  

x  Exact solution Numerical solution: 

0.01 1.00010000500017 0.99990265931703 
0.02 1.00040008001067 1.00019218079790 
0.03 1.00090040512153 1.00068362713605 
0.04 1.00160128068294 1.00137715986688 
0.05 1.00250312760580 1.00227304746931 
0.10 1.01005016708417 1.00980559020511 
0.20 1.04081077419239 1.04055445710034 
0.30 1.09417428370521 1.09381428789038 
0.40 1.17351087099181 1.17282555210895 
0.50 1.28402541668774 1.28266791788160 
0.60 1.43332941456034 1.43083019282642 
0.70 1.63231621995538 1.62808725848883 
0.80 1.89648087930495 1.88982497716907 
0.90 2.24790798667647 2.23803599894365 
0.95 2.46575981160379 2.45403278154133 
0.96 2.51330846816559 2.50130795422577 
0.97 2.56228643870935 2.55026370000716 
0.98 2.61274136097607 2.60142598862026 
0.99 2.66472270087634 2.65618134866874 
1.00 2.71828182845905 2.71828182845905 

Least square error = 4.777048157769524e-002 
Maximum error = 1.202273870219051e-002 

Table 2. Numerical solution of example 3 with 0.001ε =  

x  Exact solution: Approximate solution: 

0.01 1.00010000500017 0.99990205927314 
0.02 1.00040008001067 1.00018905639825 
0.03 1.00090040512153 1.00067646871064 
0.04 1.00160128068294 1.00136457001547 
0.05 1.00250312760580 1.00225375870636 
0.10 1.01005016708417 1.00973849889269 
0.20 1.04081077419239 1.04037087963570 
0.30 1.09417428370521 1.09358326435083 
0.40 1.17351087099181 1.17272329597310 
0.50 1.28402541668774 1.28297095588620 
0.60 1.43332941456034 1.43190869695686 
0.70 1.63231621995538 1.63039456558919 
0.80 1.89648087930495 1.89387916501748 
0.90 2.24790798667647 2.24438923316360 
0.95 2.46575981160379 2.46167033033493 
0.96 2.51330846816559 2.50909440029684 
0.97 2.56228643870935 2.55794405903290 
0.98 2.61274136097607 2.60826699026021 
0.99 2.66472270087634 2.66013923700702 
1.00 2.71828182845905 2.71828182845905 

Least square error = 1.904631456944122e-002 
Maximum error = 4.583463869312965e-003 

Table 3. Numerical solution of example 2 with 0.01ε =  

x  Exact solution: Approximate solution: 

0.01 0.997450626196856 1.000049022457190 
0.02 0.997302519148790 0.999904225086626 
0.03 0.997055721933094 0.999658487774658 
0.04 0.996710306322574 0.999311873898195 
0.05 0.996266372751550 0.998864486169478 
0.10 0.992574449865540 0.995121852839487 
0.20 0.977940295563457 0.980227935514073 
0.30 0.954018328046335 0.955865521911172 
0.40 0.921487969151610 0.922767296625126 
0.50 0.881255891315336 0.881906900045628 
0.60 0.834414894714787 0.834450471423083 
0.70 0.782195584615876 0.781700511217907 
0.80 0.725913764785679 0.725035887695443 
0.90 0.666916616201294 0.665860411655690 
0.95 0.636816479670408 0.637851270188140 
0.96 0.630769127747760 0.635834496080972 
0.97 0.624715625453869 0.641302565624547 
0.98 0.618657222109340 0.667839162157120 
0.99 0.612595157145356 0.753050309220415 
1.00 1 1 

Least square error = 1.505656477919014e-001 
Maximum error = 1.404551520750587e-001 

Table 4. Numerical solution of example 2 with 0.001ε =  

x  Exact solution: Approximate solution: 

0.01 0.999700063744667 1.000048997651690 
0.02 0.999550269913679 0.999905539210212 
0.03 0.999300663304642 0.999662033112511 
0.04 0.998951318555473 0.999318554174597 
0.05 0.998502340107278 0.998875205378224 
0.10 0.994768676259968 0.995166101518143 
0.20 0.979972835532425 0.980401474291418 
0.30 0.955799566454423 0.956237102247845 
0.40 0.922953508663133 0.923381407662209 
0.50 0.88237280145767 0.882777947819268 
0.60 0.835184679741624 0.835560336606245 
0.70 0.782653642879269 0.782999677707841 
0.80 0.72612550984489 0.726447900949766 
0.90 0.666970791392756 0.667280511703749 
0.95 0.63683010090161 0.637138738359658 
0.96 0.630777851267461 0.631086732569697 
0.97 0.624720535025953 0.625029898567321 
0.98 0.618659404963294 0.618982539886557 
0.99 0.612595702981965 0.615146041057813 
1.00 1 1 

Least square error = 4.563325208909310e-003 
Maximum error = 2.550338075847702e-003 

Table 5. Numerical solution of example 3 with 0.01ε =  
x  Exact solution: Approximate solution: 

0.01 0.0099 0.0100960003041015 
0.02 0.0196 0.0360366653987273 
0.03 0.0291 0.0303670657072325 
0.04 0.0384 0.0260149475694329 
0.05 0.0475 0.0332649887416231 
0.10 0.0900 0.0823839464178892 
0.20 0.1600 0.1561204591585380 
0.30 0.2100 0.2074355496974660 
0.40 0.2400 0.2381548425145110 
0.50 0.2500 0.2486379172432640 
0.60 0.2400 0.2390036020695580 
0.70 0.2100 0.2093025182617390 
0.80 0.1600 0.1595598605309490 
0.90 0.0900 0.0897895740811211 
1.00 0.0000 0.0000000000000000 

Least square error = 3.982185182162525e-002 
Maximum error = 1.643666539872733e-002 
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Table 6. Numerical solution of example 3 with 0.001ε =  
x  Exact solution: Approximate solution: 

0.01 0.0099 0.0099196036011825 
0.02 0.0196 0.0151466085205695 
0.03 0.0291 0.0262760006709565 
0.04 0.0384 0.0381164248027364 
0.05 0.0475 0.0491380867375322 
0.10 0.0900 0.0877019458347869 
0.20 0.1600 0.1562179650662710 
0.30 0.2100 0.2074818316449780 
0.40 0.2400 0.2381810050094690 
0.50 0.2500 0.2486536820928910 
0.60 0.2400 0.2390132758174820 
0.70 0.2100 0.2093083167324720 
0.80 0.1600 0.1595630447654590 
0.90 0.0900 0.0897909162179272 
1.00 0.0000 0.0000000000000000 

Least square error = 2.037236974106488e-002 
Maximum error = 4.760843428055148e-003 

Table 7. Numerical solution of example 4 with 0.01ε =  and 
0.001ε =  

x  Approximate solution 
with 0.01ε =  

Approximate solution with 
0.001ε =  

0.01 0.999999050001247 0.99999905000124 
0.02 1.00138293563935 1.00058198682535 
0.03 0.998925873414962 1.00122226664290 
0.04 0.996674926803085 1.00163440638376 
0.05 0.995679052387157 1.00161046638509 
0.10 0.991937113766411 0.99564009909598 
0.20 0.977375503365064 0.97944747230656 
0.30 0.953528615082815 0.95535034155804 
0.40 0.921074458355628 0.92258155140267 
0.50 0.880918490815012 0.88207633075946 
0.60 0.834152379939586 0.83496006907256 
0.70 0.782005569199992 0.78249568824034 
0.80 0.725792600064296 0.72602775110387 
0.90 0.666859273971753 0.66692586481171 
1.00 0.606530659712633 0.60653065971263 

4. Discussions and Conclusions 
We have described and demonstrated the applicability 

of the fifth order compact difference scheme for a class of 
singularly perturbed singular two-point boundary value 
problems. To avoid the singularity at zero a terminal 
boundary condition in the implicit form is derived. Using 
this condition as one of the boundary condition we solve 
the singularly perturbed singular two-point boundary 

value problem by the fifth order compact difference 
scheme. We have implemented this method on four 
examples and tabulated the computational results obtained 
by present method as well as the exact solutions. We have 
also presented the least square and maximum errors for 
the problems considered. It can be observed from the 
tables that the present method approximates the exact 
solution very well.  
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