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1. Introduction 
Many researchers have been generalising the notion of 

metric space in different ways and Menger space is one of 
such generalisations introduced by the great mathematician 
Karl Menger [1] in the year 1942 who used distribution 
functions instead of non-negative real numbers as the 
value of metric. Schweizer and Sklar [4] studied this 
concept and gave some fundamental results on this space. 
In 1972, Sehgal and Bharucha-Reid [2] obtained a 
generalization of Banach Contractive Principle on a 
complete Menger space which is a milestone in 
developing fixed point theory in Menger space. 

In 1982, Sessa [3] improved the definition of commutativity 
in fixed point theorems by introducing the notion of 
weakly commuting maps. Then in 1986, Jungck [5] 
introduced the concept of compatible maps and this notion 
of compatible mappings in Menger space was introduced 
by Mishra [6]. Further this condition has been weakened 
by introducing the notion of weakly compatible mappings 
by Jungck and Rhoades [8]. Recently, Singh and Jain [10] 
introduced weakly compatible maps in Menger space to 
establish a common fixed point theorem. 

Al. Thagafi and Shahzad [13] introduced the notion of 
occasionally weakly compatible mappings in metric space 
which is more general than weakly compatible mappings. 
Recently, Jungck and Rhoades [11] extensively studied 
the notion occasionally weakly compatible mappings in 
semi-metric space and Chauhan et.al. [13] extended the 

notion of occassionally weakly compatible mappings to 
PM-space. 

Cho, Sharma and Sahu [7] introduced the concept of 
semi-compatibility in a d-complete topological space and 
using this concept of semi compatibility in Menger space, 
Singh et.al. [9] proved a fixed point theorem using 
implicit relation. Recently, Rohen and Chhatrajit [16] used 
the concept of semi compatible mappings in cone metric 
space to prove some common fixed point theorems. 

In this paper, we prove a common fixed point theorem 
in Menger space using the concept of semi compatible and 
occasionally weakly compatible mappings. Some results 
are also given as corollaries. Our results generalise some 
similar results [12,15,16]. 

2. Preliminaries 
Definition 2.1 A triangular norm * (shortly t-norm) is a 

binary operation on the unit interval [0, 1] such that for all 
a, b, c, d ∈  [0, 1] the following conditions are satisfied: 

i) a * 1 = a; 
ii) a * b = b * a; 
ii) a * b ≤ c * d whenever a ≤ c and b ≤ d; 
iv) a * (b * c) = (a * b) * c. 
Example: a * b = min {a, b}. 

Definition 2.2 A distribution function is a function F : 
[ , ] [0,1]−∞ ∞ →  which is left continuous on R, non-
decreasing and ( )F −∞ 0= , ( ) 1F ∞ = . 

We will denote the family of all distribution functions 
on [ , ]−∞ ∞  by ∆. H  is a special element of ∆ defined by 
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If X  is a non-empty set, :F X × X → ∆  is called a 
probabilistic distance on X  and ( , )F x y  is usually 
denoted by xyF . 
Definition 2.3 (Schweizer and Sklar [4]): The ordered 
pair ( , )X F  is called a probabilistic metric space (shortly 
PM-space) if X  is a nonempty set and F is a probabilistic 
distance satisfying the following conditions: 

(i) ( ) 1xyF t x y= ⇔ = ; 

(ii) (0) 0xyF = ; 

(iii) xy yxF F= ; 

(iv) ( ) 1xzF t = , ( ) 1zyF s = ⇒  ( ) 1xyF t s+ = . 

The ordered triplet ( , ,*)X F  is called Menger space if 
( , )X F  is a PM-space, * is a t-norm and the following 
condition is also satisfied i.e. 

(v) ( ) ( )xy xzF t s F t+ ≥  * ( )zyF s . 
Proposition 2.4 (Sehgal and Bharucha-Reid [2]) Let 
( , )X d  be a metric space. Then the metric d  induces a 
distribution function F  defined by 

( ) ( ( , ))xyF t H t d x y= −  for all ,x y X∈  and t  > 0. If t -

norm * is a * b = min { },a b  for all , [0,1]a b ∈  then 
( , ,*)X F  is a Menger space. Further, ( , ,*)X F  is a 
complete Menger space if ( , )X d  is complete. 
Definition 2.5 (Mishra [6]) Let ( , ,*)X F  be a Menger 
space and * be a continuous t − norm. 

i) A sequence { }nx  in X  is said to converge to a point 
x  in X  (written as nx x→ ) iff for every ε  > 0 and λ ∈  
(0,1) , there exists an integer 0n  = 0n  ( ε , λ ) such that 

(nFx x ε )  > 1- λ for all n ≥ 0n . 
ii) A sequence { }nx  in X  is said to be Cauchy if for 

every ε > 0 and λ (0,1)∈ , there exists an integer 0n  = 0n  
( ε ,λ ) such that n n pFx x + ( ε ) > 1-λ for all 0n n≥  and 
p  > 0. 

iii) A Menger space in which every Cauchy sequence is 
convergent is said to be complete. 
Remark 2.6 If * is a continuous t- norm, it follows from 
definition 2.3 (v) that the limit of sequence in Menger 
space is uniquely determined. 
Definition 2.7 (Mishra[6]) Two self-maps S and T of a 
Menger space ( , ,*)X F  are said to be compatible if 

( ) 1STx TSxn nF t →  for all t > 0, whenever { }nx  is a 

sequence in X  such that nSx , nTx x→  for some x  in X  
as n → ∞ . 
Definition 2.8 (Singh and Jain [10]) Two self-maps S  
and T of a Menger space ( , ,*)X F are said to be weakly 
compatible (or coincidentally commuting) if they 
commute at their coincident points i.e. if Ax  = Bx  for 
some x ∈ X  then ABx = BAx . 
Definition 2.9(Al Thagafi and Shahzad [12]) Two self-
maps S  and T  of a Menger space ( , ,*)X F  are said to be 

occasionally weakly compatible (owc) if and only if S and 
T commute at their coincidence point. 
Definition 2.10 (Singh B. and Jain S.[10]) Two self-
maps S  and T  of a Menger space ( , ,*)X F  are said to be 
semi compatible if ( ) 1STx TtnF x →  for all x  > 0, 

whenever { }nx  is a sequence in X  such that nSx , nTx  
t→ , for some t  in X , as n → ∞ .  

Lemma 2.11(Singh B. and Jain S. [10]) Let{ }nx  be a 

sequence in a Menger space ( ), ,*X F  with continuous t -
norm * and *t t t≥ . If there exists a constant (0,1)k ∈   
such that 1( )n nFx x kt+ ≥ 1 ( )n nFx x t−  for all 0t >  and 

1,2,3,...n =  then { }nx  is a Cauchy sequence in X . 

3. Main Results 
Theorem 3.1 Let A, B, S, T, L and M be self-maps on a 

complete Menger space (X, F, *) with t*t ≥ t for all t ∈  
[0,1], satisfying: 

i) L(X) ⊆  ST(X), M(X) ⊆  AB(X); 
ii) There exists a constant k∈  (0,1) such that  

2 ( )*[ ( ). ( )]

[ ( ) ( )]. (2 )
LxMy ABxLx STyMy

ABxLx ABxSTy ABxMy

F kt F kt F kt

pF t qF t F kt≥ +
 

for all x, y ∈  X and t > 0 where 0 < p, q < 1 such that p 
+ q=1; 
iii) AB = BA, ST = TS, LB = BL, MT = TM; 
iv) Either AB or L is continuous; 
v) The pair (L, AB) is semi compatible and (M, ST) is 
occasionally weakly compatible. 
Then A, B, S, T, L and M have a unique common fixed 

point. 
Proof: Let us choose an arbitrary point x0 in X then by (i), 
there exist 1x , 2x ∈ X such that 0 1 0Lx STx y= =  and 

1 2 1Mx ABx y= = . By induction we can construct 
sequences {xn} and {yn} in X such that 

2 2 1 2n n nLx STx y+= =  and 2 1 2 2 2 1n n nMx ABx y+ + += =  
for n = 0, 1, 2, 3… 

By (ii), we have 
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Hence, we have  

 2 2 1 ( )y yn nF kt+ ≥ 2 1 2 ( )y yn nF t−  

Similarly, we also have  

 2 1 2 2 ( )y yn nF kt+ + ≥ 2 2 1 ( )y yn nF t+  
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In general, for all n even or odd, we have 
 1 1( ) ( )y y y yn n n nF kt F t+ −≥  

for k ∈  (0, 1) and t > 0. Thus, by Lemma 2.11, { ny } is a 
Cauchy sequence in X. Since (X, F, *) is complete, it 
converges to a point z in X. Also { 2nLx } → z, { 2nABx } 
→z, { 2 1nMx + } →z and { 2 1nSTx + } →z. 

First, let AB be continuous then we have, 
AB(AB) 2nx →ABz and (AB) 2nLx →ABz. Since (L, AB) is 
semi compatible, we have L(AB) 2nx →ABz. 

Again, by (ii), we have  
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Letting n→∞ we have 
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For k∈  (0, 1) and all t > 0. Thus, we have z = ABz. 
Now by (ii), we have 
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Letting n→∞ we have 
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Noting that 2 ( )zLzF kt ≤1 and using (iii) in definition 2.1, 
we have 
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Thus, we have z = Lz = ABz. 
By (ii), we have 

2
( ) ( )( ) 2 1 2 12 1

( ) ( )
( ) 2 1

( ) 2 1

( )*[ ( ) ( )]

( )
(2 )

( )

AB Bz L Bz STx MxL Bz Mx n nn

AB Bz L Bz
AB Bz Mx nAB Bz STx n

F kt F kt F kt

pF t
F kt

qF t

+ ++

+
+

 
≥  

+  

 

Since AB=BA and BL=LB, we have L(Bz)=B(Lz)=Bz 
and AB(Bz)=B(ABz)=Bz. Letting n→∞, we have 
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For k ∈  (0, 1) and all t > 0. Thus, we have z = Bz. Since 
z = ABz, we also have z = Az. Therefore, z = Az = Bz = Lz. 

Since L(X) ⊆  ST(X), there exists v ∈  X such that z = Lz 
= STv. By (ii), we have 
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Letting n→∞ we have 
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Noting that 2 ( )zMvF kt ≤1 and using (iii) in definition 2.1, 
we have 

 ( ) (2 ) ( )zMv zMv zMvF kt F kt F t≥ ≥  

Thus, by Lemma 2.11, we have z = Mv and so z = Mv = 
STv. Since (M, ST) is occasionally weakly compatible, we 
have STMv = MSTv. Thus, STz = Mz. 

By (ii), we have 
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Letting as n→∞ we have 
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Thus, we have z = Mz and therefore z = Az = Bz = Lz 
=Mz = STz. 

By (ii), we have 
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Since MT = TM and ST = TS, we have MTz = TMz = Tz 
and ST(Tz) =T(STz) = Tz. Letting n→∞, we have 
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Thus, we have z = Tz. Since Tz = STz, we also have z = 
Sz. Therefore, z = Az = Bz = Lz =Mz = Sz = Tz, and hence 
z is the common fixed point of A, B, L, M, S and T. 

Secondly, let L be continuous then we have, 
LL 2nx →Lz and L(AB) 2nx →Lz. 

Since (L, AB) is semi compatible, we have L (AB) 
2nx →ABz and ABz =Lz. 
By (ii), we have 
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Letting n→∞ we have 
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Thus, we have z = Lz. Hence z = Lz = Mz = S z = Tz.  
Since M(X) ⊆  AB(X), there exists vϵ X such that z = Mz 

= ABv. By (ii), we have 
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Letting n→∞ 
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Noting that 2 ( ) 1zLvF kt ≤  and using (iii) in definition 2.1, 
we have 

 
( ) ( )

( ) 1
1

zMv zLv

zMv

F kt pF kt q
qF kt

p

≥ +

≥ =
−

 

Thus, we have z = Lv = ABv. Since (L, AB) is 
occasionally weakly compatible, we have Lz = ABz and 
using z = Bz as shown above. Hence z = Az = Bz = Sz = Tz 

= Lz = Mz, that is, z is the common fixed point of the six 
mappings in this case also. 

In order to prove the uniqueness of fixed point let w be 
another common fixed point of A, B, S, T, L and M. Then 
by (ii), we have  
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Thus, we have z = w. This completes the proof of the 
theorem. 

If we take B = T = XI ( the identity map on X) in the 
main theorem, we have the following: 
Corollary 3.2: Let A, S, L and M be self-maps on a 
complete Menger space (X, F, *) with t*t ≥ t for all t ∈  [0, 1], 
satisfying: 

(i)  L(X) ⊆  S(X), M(X) ⊆  A(X); 
(ii) There exists a constant kϵ (0, 1) such that  
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for all x, y ∈  X and t > 0 where 0 < p, q < 1 such 
that p + q=1; 

(iii) either A or L is continuous; 
(iv) the pair (L, A) is semicompatible and (M, S) is 

occassionally weakly compatible. 
Then A, S, L, and M have a unique common fixed point. 
If we take A = S, L = M and B = T = XI  in the main 

Theorem, we have the following: 
Corollary 3.3: Let (X, F, *) be a complete Menger space 
with t*t ≥ t for all t ∈  [0, 1] and let A and L be compatible 
maps on X such that L(X) ⊆  A(X). If A is continuous and 
there exists a constant k ∈  (0, 1) such that  
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for all x, y ∈  X and t > 0 where 0 < p, q < 1 such that p + 
q =1, then A and L have a unique fixed point. 
Example 3.4: Let X = [0, 1] with the metric d defined by 
d(x, y) =│x-y│ and defined ( )xyF t =H (t- d (x, y)) for all x, 
y ∈  X, t > 0. Clearly (X, F, *) is a complete Menger space 
where t-norm * is defined by a*b = min{a, b} for all a, b 
∈  [0, 1]. Let A, B, S, T, L and M be maps from X into 
itself defined as 

 , , , , ,
4 3 2 6 15
x x x x xAx Bx Sx x Tx Lx Mx= = = = = =  

for all x ∈  X. Then 
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( ) ( )

( ) ( )

1 10, 0,
6 2

1 10, 0, .
15 12

L X ST X

and M X AB X

   = ⊂ =      
   = ⊂ =      

 

Clearly AB = BA, ST = TS, LB = BL, MT = TM and AB, 

L are continuous. If we take k = 1
3

 and t=1, we see that the 

condition (ii) of the main Theorem is also satisfied. 
Moreover, the maps L and AB are semi compatible if 
lim 0n nx→∞ = , where { nx } is a sequence in X such that 
limn nLx→∞ = limn nABx→∞ = 0 for 0 ∈  X. The maps M 
and ST are occasionally weakly compatible at 0. Thus, all 
conditions of the main Theorem are satisfied and 0 is the 
unique common fixed point of A, B, S, T, L, and M. 
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