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Abstract  This paper is based on statistical analysis of rate of kidney renal failure taking into account that the 
variables of interest are sex and age group. The nature of the data used herein is secondary data, which was obtained 
from University of Maiduguri Teaching Hospital (UMTH) medical record for consecutive ten (10) years (1998-
2007), while monthly reported cases was collected and analyzed. Our present study has been carried out in order to 
determine whether the effect of renal failure depends on age and sex, and to look at the prevalence of kidney (renal) 
failure, over the period of study. Appropriate statistical techniques have been used to test the difference of means (t-
test) and contingency table (x2 -test), based on the analysis of results. The analysis has been done for significant at 
5% level of significance. The empirical results are obtained from the tests of two different means which reveal that 
there is a significant difference in the prevalent of renal failure between male and female. Resultantly, the impact of 
kidney renal failure has been focused both on two parameters of age and sex. Finally, some significant suggestions 
based on our empirical results and observations have also been proposed for preventing kidney renal failure and 
future scope of present study. 
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1. Introduction 
A kidney renal failure is a serious disease, which has 

major impact on life and can be accidentally fatal; several 
studies have demonstrated the high incidence of renal 
failure, which are of two types i.e. acute and chronic renal 
failures. Kidney disease is an important public health issue. 
It is common and the prevalence increases with age, which 
means that the disease burden will increase with our aging 
population. Chronic kidney disease is an independent risk 
factor for other diseases, particularly cardiovascular 
disease. It often coexists with other cardiovascular 
conditions meaning that it needs to be managed alongside 
other diseases and risk factors such as diabetes and 
hypertension as well as the social needs that come with 
frailty and multiple conditions. In a minority of cases, 
chronic kidney disease progresses to end stage renal 
disease, which may require renal replacement therapy. 
This progression and the risks of other vascular events, 
such as stroke and heart failure can be reduced if chronic 
kidney disease is identified and managed, early diagnosis 
is therefore essential. The acute renal failure (ARF) is 
characterized usually reversible deterioration of renal 
function, which develops over a period of days or week. It 
occurs suddenly, by causing bacterial infection, injuries, 
shock, congestive heart failure, drug poisoning and 
severed bleeding which results in uremia. A marked 

reduction in urine volumed is usual and the clinical 
features, while the rapid problems of diagnosis and 
management arises. Many of the disorder giving rise to 
acute renal failure carry high rate of mortality in human 
beings, but if the patients survives, then the renal function 
usually returns to normal or near normal. Chronic kidney 
disease (CKD) describes abnormal kidney function and/or 
structure. It is common, frequently unrecognized and often 
exists together with other conditions (for example, 
cardiovascular disease and diabetes). CKD can progress to 
end stage renal disease in a small but significant 
percentage of people [3]. CKD is usually asymptomatic 
until the late stages, but it is detectable usually by 
measurement of serum creatinine or urine testing for 
protein. In the UK clinical practice has been standardized 
using the 4 factor Modification of Diet in Renal Disease 
(MDRD) equation and albumin creatinine ratio, consistent 
with the National Institute for Health and Clinical 
Excellence (NICE) guidance [3]. Other measurement 
methods exist for specific indications such as the CKD-
EPI equation and the Cockroft-Gault in children. The 
CKD-EPI equation is more accurate than the MDRD 
especially in categorizing CKD stages 3-5 and may be 
used in future CKD guidelines [8]. There is evidence that 
treatment can prevent or delay the progression of CKD, 
reduce or prevent the development of complications and 
reduce the risk of cardiovascular disease. Statistical 
simulations techniques and sampling tests are widely used 
to explore significant empirical results and implications in 
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different allied fields of biology, natural science, and life 
sciences. In this direction, we refer recent work of Maurya 
[5] and references therein. Literature shows that several 
previous researchers and authors [2,9,10,11,12] paid their 
attention to contribute in this connection.  

2. Statement of the Problem  
The cases of kidney renal failure over the years 

especially in Nigeria, has been observed to be fluctuating, 
despite the fact that the disease can be accidentally fatal, 
so therefore, renal failure may be caused by any condition, 
which destroys the normal structures and functions of the 
kidney. Obviously, for that reason it has been observed 
that there was a great impact in the problem due to some 
prevention, which arises today in the human health 
organization. By the aims and objectives mentioned below, 
one will be able to know the discrepancies arising the 
effects of renal failure and how it can be cured. As a result 
of its great economic importance, there is a need to 
address both educated and illiterate people so as to know 
the implications and protections in human societies. It is 
this development that prompted the desire to look at the 
situation morally and clearly, so as to draw a valid 
conclusion.  

3. The Aim and Objectives 
The aim and objectives that govern the renal failure are:  
•  To verify whether the effect of renal failure depends 

on age and sex together with the objectives. 
•  To verify whether there is any difference in the 

prevalence of renal failure between sexes. 
•  To analyze, verify, recommend and conclude based 

on the result of the analysis made to the research on 
the effect of renal failure.  

4. Research Questions 
•  Does the number of renal failure increases or 

decreases over a period of time at different age group? 
•  Does the number of renal failure depend on age and 

sex? 
•  At what age is the renal failure more rampant and 

prevalent? 

5. Research Hypothesis 
1. Null hypothesis Ho: kidney (renal) failure does not 

depends on age and sex: Ho: u1=u2. Alternative hypothesis 
H1: kidney (renal) failure depends on age and sex: H1: 
u1#u2 

2. Null hypothesis Ho: there is no significant difference 
in the prevalence of kidney (renal) failure between sexes: 
Ho: u1=u2. Alternative hypothesis: there is a significant 
difference in the prevalence of kidney (renal) failure 
between sexes: H1:u1#u2.  

6. Significance of the Study 

Study of literature shows that much work has been 
carried out on statistical analysis on health related issues. 
Apart from this major sector to the pursuance of my 
education it can also serve as baseline information. 
Researchers that may be willing to carryout relevant study 
in the future and also the analysis will be great 
significance to the University of Maiduguri Teaching 
Hospital and Borno State Ministry of Health in general. 

7. Scope and Limitation of the Study 
This study is limited to the number of reported cases on 

the rate of kidney (renal) failure at the University of 
Maiduguri Teaching Hospital (UMTH) for the year (1998-
2007). It entails some limitation especially in the field of 
data collection in the study is restricted to only University 
of Maiduguri Teaching Hospital. Considering the 
wideness of this topic, the analysis is based on the ten (10) 
years monthly reported cases of the renal failure in 
Maiduguri and other towns nearby the state.  

A chi-squared test also referred to as chi-square test or 
2χ  test is any statistical hypothesis in which the sampling 

distribution of the test statistic is a chi-squared distribution 
when the null hypothesis is true. Also considered a chi-
squared test is a test in which this is asymptotically true, 
meaning that the sampling distribution (if the null 
hypothesis is true) can be made to approximate a chi-
squared distribution as closely as desired by making the 
sample size large enough. He computed the sampling 
distribution of the sample variance of a normal population. 
Thus in German this was traditionally known as the 
Helmertsche ("Helmertian") or "Helmert distribution". 
The name "chi-squared" ultimately derives from Pearson's 
shorthand for the exponent in a multivariate normal 
distribution with the Greek letter Chi, writing -½χ² for 
what would appear in modern notation as -½xTΣ-1x (Σ 
being the covariance matrix). The idea of a family of "chi-
squared distributions" is however not due to Pearson but 
arose as a further development due to Fisher in the 1920s.  

8. Calculating the Test-Statistic 
The value of the test-statistic is 

 
2

2

1

( )n
i i

ii

O E
E

χ
=

−
= ∑  

Where 
2χ = Pearson's cumulative test statistic, which 

asymptotically approaches a 2χ  distribution. 

iO = an observed frequency; 

iE = an expected (theoretical) frequency, asserted by 
the null hypothesis; 

n= the number of cells in the table. 

9. Assumptions for the Chi-Square 
Distribution  
•  The data obtained from a random samples 
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•  The expected value in each cell must be at least 5 or 
more. 

10. Contingency Table 
A contingency table (also referred to as cross tabulation 

or cross tab) is a type of table in a matrix format that 
displays the (multivariate) frequency distribution of the 
variables. The term contingency table was first used by 
Karl Pearson in "On the theory of contingency and its 
relation to association and normal correlation", part of the 
Drapers' Company Research Memoirs Biometric Series I 
published in 1904. A crucial problem of multivariate 
statistics is finding (direct-) dependence structure 
underlying the variables contained in high dimensional 
contingency tables. If some of the conditional 
independences are revealed, then even the storage of the 
data can be done in a smarter way. In order to do this one 
can use information theory concepts, which gain the 
information only from the distribution of probability, 
which can be expressed easily from the contingency table 
by the relative frequencies. 

The contingency table is given as follows; 
Variable 1 2 …………………….C Total 

1 X11 X12…………………..X1C X1. 
2 X21 X22………………….X2C X2. 
: :: ::…………………….:: :: 
R XR1 XR2…………… ……XRC XR 

Total X.1 X.2………………….X.C X.. 

11. Measures of Association 
The degree of association between the two variables 

can be assessed by a number of coefficients: the simplest 
is the phi coefficient defined by 

 
2

N
χφ =  

Where χ2 is derived from Pearson's chi-squared test, 
and N is the grand total of observations. φ varies from 0 
(corresponding to no association between the variables) to 
1 or -1 (complete association or complete inverse 
association). This coefficient can only be calculated for 
frequency data represented in 2 x 2 tables. φ can reach a 
minimum value -1.00 and a maximum value of 1.00 only 
when every marginal proportion is equal to. 50 (and two 
diagonal cells are empty). Otherwise, the phi coefficient 
cannot reach those minimal and maximal values.  

Alternatives include the tetrachoric correlation 
coefficient (also only applicable to 2 × 2 tables), the 
contingency coefficient C, and Cramér's V. C suffers from 
the disadvantage that it does not reach a maximum of 1 or 
the minimum of -1; the highest it can reach in a 2 x 2 table 
is. 707; the maximum it can reach in a 4 × 4 table is 0.870. 
It can reach values closer to 1 in contingency tables with 
more categories. It should, therefore, not be used to 
compare associations among tables with different numbers 
of categories. Moreover, it does not apply to asymmetrical 
tables (those where the numbers of row and columns are 
not equal). 

The formulae for the C and V coefficients are: 
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k being the number of rows or the number of columns, 
whichever is less. 

C can be adjusted so it reaches a maximum of 1 when 
there is complete association in a table of any number of 

rows and columns by dividing C by 1k
k
−  (recall that C 

only applies to tables in which the number of rows is 
equal to the number of columns and therefore equal to k). 

The tetrachoric correlation coefficient assumes that the 
variable underlying each dichotomous measure is 
normally distributed. The tetrachoric correlation 
coefficient provides "a convenient measure of [the 
Pearson product-moment] correlation when graduated 
measurements have been reduced to two categories. The 
tetrachoric correlation should not be confused with the 
Pearson product-moment correlation coefficient computed 
by assigning, say, values 0 and 1 to represent the two 
levels of each variable (which is mathematically 
equivalent to the phi coefficient). An extension of the 
tetrachoric correlation to tables involving variables with 
more than two levels is the polychoric correlation 
coefficient. 

The Lambda coefficient is a measure of the strength of 
association of the cross tabulations when the variables are 
measured at the nominal level. Values range from 0 (no 
association) to 1 (the theoretical maximum possible 
association). Asymmetric lambda measures the percentage 
improvement in predicting the dependent variable. 
Symmetric lambda measures the percentage improvement 
when prediction is done in both directions. 

The uncertainty coefficient is another measure for 
variables at the nominal level. 

The values range from -1 (100% negative association, 
or perfect inversion) to +1 (100% positive association, or 
perfect agreement). A value of zero indicates the absence 
of association. 

12. Yates's Correction for Continuity 
Yates' correction for continuity (or Yates' chi-squared 

test) is used in certain situations when testing for 
independence in a contingency table. In some cases, 
Yates' correction may adjust too far, and so its current use 
is limited. Using the chi-squared distribution to interpret 
Pearson's chi-squared statistic requires one to assume that 
the discrete probability of observed binomial frequencies 
in the table can be approximated by the continuous chi-
squared distribution. This assumption is not quite correct, 
and introduces some error. 

To reduce the error in approximation, Frank Yates, an 
English statistician, suggested a correction for continuity 
that adjusts the formula for Pearson's chi-squared test by 
subtracting 0.5 from the difference between each observed 
value and its expected value in a 2 × 2 contingency 
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table.[2] This reduces the chi-squared value obtained and 
thus increases its p-value. 

The effect of Yates' correction is to prevent 
overestimation of statistical significance for small data. 
This formula is chiefly used when at least one cell of the 
table has an expected count smaller than 5. Unfortunately, 
Yates' correction may tend to overcorrect. This can result 
in an overly conservative result that fails to reject the null 
hypothesis when it should (a type II error). So it is 
suggested that Yates' correction is unnecessary even with 
quite low sample sizes [3], such as: 
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The following is Yates' corrected version of Pearson's 
chi-squared statistic: 
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where: 
Oi = an observed frequency 
Ei = an expected (theoretical) frequency, asserted by the 

null hypothesis 
N = number of distinct events 

13. Student's T-Test 
A t-test is any statistical hypothesis test in which the 

test statistic follows a Student's t distribution if the null 
hypothesis is supported. It can be used to determine if two 
sets of data are significantly different from each other, and 
is most commonly applied when the test statistic would 
follow a normal distribution if the value of a scaling term 
in the test statistic were known. When the scaling term is 
unknown and is replaced by an estimate based on the data, 
the test statistic (under certain conditions) follows a 
Student's t distribution. The t-statistic was introduced in 
1908 by William Sealy Gosset, a chemist working for the 
Guinness brewery in Dublin, Ireland ("Student" was his 
pen name). Gosset had been hired due to Claude 
Guinness's policy of recruiting the best graduates from 
Oxford and Cambridge to apply biochemistry and 
statistics to Guinness's industrial processes [3]. Gosset 
devised the t-test as a cheap way to monitor the quality of 
stout. The t-test work was submitted to and accepted in the 
journal Biometrika, the journal that Karl Pearson had co-
founded and was the Editor-in-Chief; the article was 
published in 1908. Company policy at Guinness forbade 
its chemists from publishing their findings, so Gosset 
published his mathematical work under the pseudonym 
"Student". Actually, Guinness had a policy of allowing 
technical staff leave for study (so-called study leave), 
which Gosset used during the first two terms of the 1906-
1907 academic year in Professor Karl Pearson's Biometric 
Laboratory at University College London. Gosset's 
identity was then known to fellow statisticians and the 
Editor-in-Chief Karl Pearson. It is not clear how much of 
the work Gosset performed while he was at Guinness and 
how much was done when he was on study leave at 
University College London. Among the most frequently 
used t-tests are: 

•  A one-sample location test of whether the mean of a 
normally distributed population has a value specified 
in a null hypothesis. 

A two-sample location test of the null hypothesis that 
the means of two normally distributed populations are 
equal. All such tests are usually called Student's t-tests, 
though strictly speaking that name should only be used if 
the variances of the two populations are also assumed to 
be equal; the form of the test used when this assumption is 
dropped is sometimes called Welch's t-test. These tests are 
often referred to as "unpaired" or "independent samples" t-
tests, as they are typically applied when the statistical 
units underlying the two samples being compared are non-
overlapping. In testing the null hypothesis that the 
population mean is equal to a specified value μ0, one uses 
the statistic 

 0

/
x

t
s n

µ−
=  

Where x  is the sample mean, s is the sample 
standard deviation of the sample and n is the sample 
size. The degrees of freedom used in this test are n − 1. 

14. Independent Two-Sample T-Test 

14.1. Equal Sample Sizes, Equal Variance 
This test is only used when both: 
•  the two sample sizes (that is, the number, n, of 

participants of each group) are equal; 
•  it can be assumed that the two distributions have the 

same variance. 
Violations of these assumptions are discussed below. 
The t statistic to test whether the means are different 

can be calculated as follows: 

 1 2

1 2
2·X X

X Xt
S

n

−
=  

where 

 2 2
1 2 1 2

1 ( )
2X X X XS S S= +  

Here 1 2X XS  is the grand standard deviation (or pooled 
standard deviation), 1 = group one, 2 = group two. The 
denominator of t is the standard error of the difference 
between two means. 

For significance testing, the degrees of freedom for this 
test is 2n - 2 where n is the number of participants in each 
group. 

14.2. Unequal Sample Sizes, Equal Variance 
This test is used only when it can be assumed that the 

two distributions have the same variance. (When this 
assumption is violated, see below.) The t statistic to test 
whether the means are different can be calculated as 
follows: 
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Note that the formulae above are generalizations of the 
case where both samples have equal sizes (substitute n for 
n1 and n2). 

1 2X XS  is an estimator of the common standard 
deviation of the two samples: it is defined in this way so 
that its square is an unbiased estimator of the common 
variance whether or not the population means are the same. 
In these formulae, n = number of participants, 1 = group 
one, 2 = group two. n − 1 is the number of degrees of 
freedom for either group, and the total sample size minus 
two (that is, n1 + n2 − 2) is the total number of degrees of 
freedom, which is used in significance testing. 

14.3. Unequal (or Equal) Sample Sizes, 
Unequal Variances 

This test, also known as Welch's t-test, is used only 
when the two population variances are not assumed to be 
equal (the two sample sizes may or may not be equal) and 
hence must be estimated separately. The t statistic to test 
whether the population means are different is calculated as: 

 1 2

1 2X X

X Xt
s −
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Where 
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Here s2 is the unbiased estimator of the variance of the 
two samples, ni = number of participants in group i, i=1 or 
2. Note that in this case 2

1 2X Xs − is not a pooled variance. 

For use in significance testing, the distribution of the test 
statistic is approximated as an ordinary Student's t 
distribution with the degrees of freedom calculated using 
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This is known as the Welch–Satterthwaite equation. 
The true distribution of the test statistic actually depends 
(slightly) on the two unknown population variances (see 
Behrens–Fisher problem). 

15. Dependent T-Test for Paired Samples 
This test is used when the samples are dependent; that 

is, when there is only one sample that has been tested 
twice (repeated measures) or when there are two samples 
that have been matched or "paired". This is an example of 
a paired difference test. 

 0 .
/

D

D

X
t

s n
µ−

=  

For this equation, the differences between all pairs must 
be calculated. The pairs are either one person's pre-test 
and post-test scores or between pairs of persons matched 
into meaningful groups (for instance drawn from the same 
family or age group: see table). The average (XD) and 
standard deviation (sD) of those differences are used in the 
equation. The constant μ0 is non-zero if you want to test 
whether the average of the difference is significantly 
different from μ0. The degree of freedom used is n − 1. We 
remark here that the statistical tests and techniques applied 
here are analyzed and used by Maurya et al. [5,7] in their 
recent research work. 

16. Assumptions for The Student's T-Test 
Distribution  

Most t-test statistics have the form t = Z/s, where Z and 
s are functions of the data. Typically, Z is designed to be 
sensitive to the alternative hypothesis (i.e., its magnitude 
tends to be larger when the alternative hypothesis is true), 
whereas s is a scaling parameter that allows the 
distribution of t to be determined. 

As an example, in the one-sample t-test 
ˆ/ ( / )Z X nσ= , where X  is the sample mean of the 

data, n is the sample size, and σ̂  is the population 
standard deviation of the data; s in the one-sample t-test is 
ˆ / nσ , where σ̂  is the sample standard deviation. 

17. The Assumptions Underlying A T-
Test Are That 
•  Z follows a standard normal distribution under the 

null hypothesis 
•  s2 follows a χ2 distribution with p degrees of freedom 

under the null hypothesis, where p  is a positive 
constant 

•  Z and s are independent. 
In a specific type of t-test, these conditions are 

consequences of the population being studied, and of the 
way in which the data are sampled. For example, in the t-
test comparing the means of two independent samples, the 
following assumptions should be met: 
•  Each of the two populations being compared should 

follow a normal distribution. This  can be tested 
using a normality test, such as the Shapiro-Wilk or 
Kolmogorov–Smirnov test, or it can be assessed 
graphically using a normal quantile plot. 

•  If using Student's original definition of the t-test, the 
two populations being compared  should have 
the same variance (testable using F test, Levene's test, 
Bartlett's test, or the Brown–Forsythe test; or 
assessable graphically using a Q-Q plot). If the 
sample sizes in the two groups being compared are 
equal, Student's original t-test is highly robust to the 
presence of unequal variances. Welch's t-test is 
insensitive to equality of the variances regardless of 
whether the sample sizes are similar. 
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•  The data used to carry out the test should be sampled 
independently from the two populations being 
compared. This is in general not testable from the 
data, but if the data are known to be dependently 
sampled (i.e. if they were sampled in clusters), then 
the classical t-tests discussed here may give 
misleading results. 

18. Results and Discussions 
In this part, we shall employ the use of statistical tools 

that we discussed earlier so as to present out data and 
analyzed it. The statistical tools to be applied to verify our 
research hypothesis, contingency table (x2 test) and test of 
two different means (t-test) are the tests used in the 
analysis.  

18.1. Chi – Square Test 
Age Male Female Total 

1-15 54 
51.46 

40 
42.54 94 

16-30 108 
113.33 

99 
93.67 207 

31-45 127 
151.66 

150 
125.27 277 

46-60 177 
146.73 

91 
121.27 268 

61-75 55 
54.75 

45 
45.25 100 

76-90 15 
18.07 

18 
14.93 33 

Total 536 443 979 

 
Chi square test 0.125 0.251 4.0009 6.245

0.001 0.521 0.151 0.304 4.850 7.556
0.001 0.630 24.644

− = + + +
+ + + + + +
+ + =

 

DF = 5, P-value = 0.000. 
From the table of chi-square test analysis, stating the 

hypothesis: 
Null hypothesis Ho: kidney (renal) failure does not 

depends on age and sex: Ho: u1=u2. Alternative hypothesis 
H1: kidney (renal) failure depends on age and sex: 
H1:u1#u2 

With test statistic: 
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With (r-1)(c-1) 
Where Oij = observed number of sex counts in the ith 

row of the jth column 
Where Eij = expected number of sex counts in the ith 

row of the jth column 
Decision criterion: reject Ho if probability < significant 

level otherwise reject. 
From the table 1, it shows that the chi-square calculated 

value is 24.644 and the chi-square tabulated value at 5% 
level of significance, with (6-1)(2-1) = 5 is 11.070. 
Therefore since X2  

Calculated >= X2 tabulated, we reject the null 
hypothesis and conclude that kidney (renal) failure 
depends on age and sex and therefore there is a significant 
differences, that is 24.644>11.070 and p-value given as 

0.000 and the significant level at 0.05α = . In 

conclusion, since p-value < significant level i.e, 0.000 < 
0.05, we reject the hypothesis. 

18.2. T-TEST 

Paired Samples Statistics 

 Mean N Standard 
deviation 

Standard Error 
Mean 

Pair male 
1 female 

56,600 
41,3000 

10 
10 

21.10398 
9.79853 

6.67366 
3.09857 

Paired Samples Correlations 
 N Correlation SIG. 

pair male 
1 

female 
10 .810 .004 

Paired Samples Test 

 Mean Standard 
deviation 

Standard Error 
mean t 

Pair 
male 

1 female 
15.30000 14.36083 4.54129 3.369 

Paired Samples Test 
 DF SIG.(2-TAILED) 

Pair male 
1 female 9 .008 

From the table 2, it shows that the test of two different 
means, stating the hypothesis;  

Null hypothesis Ho: there is no significant difference in 
the prevalence of kidney (renal) failure between sexes: Ho: 
u1=u2. Alternative hypothesis: there is a significant 
difference in the prevalence of kidney (renal) failure 
between sexes: H1:u1#u2.  

18.3. Test Statistic 
calculated as: 

 1 2

1 2X X

X Xt
S −

−
=  

Where 
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Here s2 is the unbiased estimator of the variance of the 
two samples, ni = number of participants in group i, i=1 or 
2. Note that in this case 2

1 2X Xs −  is not a pooled variance. 

For use in significance testing, the distribution of the test 
statistic is approximated as an ordinary Student's t 
distribution with the degrees of freedom calculated using 
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The significance level at 0.05α = . 

19. Decision Criterion 
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We reject the hypothesis if the p-value < significant 
level otherwise do not reject the hypothesis if t 

calculated >= t 0.05α = , n1+n2-2, at 0.05α =  level of 
significance. 

20. Conclusions 
From the table 2, this shows that the test of two 

different means, that is the t-calculated value which is 
3.36 and the t-tabulated value at 5% level of significance, 
with (10+10-2) = 18 degree of freedom is 2.01. Therefore 
since t-calculated > t-tabulated, we reject the null 
hypothesis and conclude that there is a significant 
differences between the male and female sexes which 
shows that there is a highly positive correlation between 
male and female sexes and therefore, that is 0.008 < 0.05, 
we reject the hypothesis and conclude that there is a 
significant difference 

21. Coefficient of Contingency 

 
( )

2

1
V

N k
χ

=
−

 

Where, N = total number of observation. 
The larger the value of the coefficient, the greater the 

degree of association. The greater the degree of 
association. The coefficient can take on values between 
zero and one. 

21.1. Data 

 

2 24.644, 979,

24.644 0.157
24.644 979

N N

C

= =

= ==
+

 

This shows that there is a weak relationship between 
age and sex. 

Conclusion and Recommendations 
The data analyzed on monthly and yearly basis of 

reported cases on the rate of kidney renal failure, at the 
university of Maiduguri teaching hospital (UMTH) reveal 
that there is a little reduction in the number of patients. 
From the result of chi-square test (contingency table) it 
was observed that the average rate at which real failure 
affect people, the result shows that it is significant and 
indicates that the age of person depends on sex, at the 
same time the coefficient of contingency shows a weak 
relationship between the age and sex. Despite the fact that, 
the rate at which kidney (renal) failure is failed, it is 

observed and believed that it will have influence on its 
great economic importance and this shows from the test 
that there are a little bit decreases as a result of the 
improvement in treatments. Also from the test of 
difference of two means it was observed that the renal 
failure is significant difference between the male and 
female sexes. 

From the analysis, we observed an increase and 
decrease at both time. So there is need for improvement 
especially in the area of supply of genuine drugs to the 
hospital and the affected patients. Since one of the 
analysis shows that there is a difference among the sexes 
at both time, then the inspectorate division of national 
agencies for health, drugs administrative and control 
should continue inspecting, advising the illiterate and 
educated people so as to to know the implication of the 
kidney diseases. Generally, government should provide 
more equipments and provision for more health workers 
and better coordination of services to professional doctors 
and nurses so as to take care of the affected persons in the 
society. 
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