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Abstract This paper concerns with the estimation of parameters for the Exponentiated Lomax Distribution ELD.
Different estimation methods such as maximum likelihood, quasi-likelihood, Bayesian and quasi-Bayesian are used
to evaluate parameters. Numerical study is discussed to illustrate the optimal procedure using MATHCAD program
(2001). A comparison between the four estimation methods will be performed.
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1. Introduction

Authors of the statistical distributions field have
continuous motivations for developing a variety
distributions to become more flexible and more fitting for
real data sets. These new statistical distributions are used
to describe and interpret the phenomena. The idea of
exponentiated distributions was utilized to create new
distributions. Cordeiro & Castro (2011) extended many
known distributions as normal, Weibull, gamma, Gumbel,
and inverse Gaussian distributions.

Gupta et al. (1998) introduced a class of exponentiated
distributions based on cumulative distribution function
CDF for the exponential distribution. In a similar manner,
Nadarajah and Kotz (2006) proposed the exponentiated
gamma and exponentiated Gumbel distributions. Gauss &
Cordeiro (2013) proposed a new method of adding two
parameters to a continuous distribution that extends the
idea of Nadarajah and Kotz (2006). Alzaatreh et al. (2013)
proposed another new method for generating many new
distributions. This method is called, the T-X family of
distributions. It has a connection between the hazard
functions and each generated distribution as a weighted
hazard function of the random variable X. Alzaatreh et al.
(2013) founded several known continuous distributions to
be special cases of these new distributions.

Wedderbum (1974) introduced an important extension
of maximum likelihood estimation to get the optimal
parameter estimation. This method is called Quasi-
Likelihood. It is required assumptions about means and
variance functions in contrast to the full distributional
assumptions of ordinary likelihood. Quasi-Likelihood for

an observation X with mean x and variance V (u) takes
this form:

QX u) _x—p
ou V(1)
u (1.1
or Q(x; 1) = J'X_—ﬂd/wrfunction of X
o V(x)

where, z is E(X) and V (x) is V(X).

For a sample of size n, the quasi-Bayesian estimation is
depended on replacing the likelihood function by the
natural exponential of the quasi-likelihood function.

This paper is organized as follows: In Section 2, The
ELD distribution will be defined. In section 3, different
estimation methods will be used such as maximum
likelihood, quasi-likelihood, Bayesian and quasi-Bayesian
to obtain the estimators of parameters. Section 4 concerns
with comparing procedures of the estimators and
compares their performances through numerical
simulations.

2. The Exponentiated Lomax Distribution

The CDF and the probability density function pdf of the
ELD respectively, are:

F(0)=[1-a+107° " x>0,0,aand 2>0 (2.1)
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Note that, when A =1, the pdf of the ELD reduces to
the Exponentiated Pareto distribution with parameter

(6,a). Also, when A =a =1, the pdf of the ELD reduces
to the standard Lomax distribution with one parameter 6.

The survival function and the hazard function of the
ELD respectively, take the following forms:

S(x)

=1-[1-(+2 x)ﬂ“ . x>0, 6,a,and A >0(2.3)
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Figure 1. The pdf and CDF carves of the ELD at different values of the
parameters (49, «a, and l)

The r'" moments 4, of the ELD are:
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Thus, the mean and variance of the ELD respectively,

| ,u:yl’z%{B(l—%,aj—B(l, a)},
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where B(a,b)=

(2.6)
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3. Different Estimation Methods

3.1. Maximum Likelihood Estimators

The likelihood function of the ELD based on the
samples Xy, X5,---, X, is:

L(4,0,a) oc (a0 A)"

n . (3.1.1)
H[l—(lm x)~0 ] t 4 %)

i=1
And the log-likelihood functions foré&, «, and A are

respectively:
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The derivatives of (3.1.2) with respectto €, «, and 1
respectively, are as follows:

TR
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The maximum likelihood estimators of the parameters
6, a,and A can be obtained by solving equations (3.1.3),
(3.1.4) and (3.1.5) after equating them to zero.

Unfortunately, there is no closed form for the

estimators @, &, and 1. So, Newton-Raphson method is
using to solve these equations in numerical analysis, see
Salem (2013).

Now, the log likelihood function which in (3.1.2) can
be used to construct Fisher information matrix | has the
form:
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3.2. Quasi-Likelihood Estimators

Let the pdf of the ELD, E(x) =« and var(x) of the

random variable X which is taken from the ELD as in
(2.2), (2.6), and (2.7) respectively, then,

E(X)=u =% [B(l—%,aj— B(L a)}, (3.2.1)

var(x) = ,uz [éB(l—%,aj— Bz[l—%,aﬂ
=V (u) BB(l—%,aJ— Bz(l—%,aﬂ,

where V (.) is assumed to be known and the parameter s

may be unknown. So, the Quasi-Likelihood function (1.1)
gives:

(3.2.2)

Q(x, 6, a, A) =— i=1

a {B(l—;,aj— B(1, a)} (3.2.3)
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The derivatives of Q(x, x) with respect to ¢, «, and
A respectively, are:

2 _[w(n)-v(k)].
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6-1

r:T, and W(.) is the Psi-gamma. It's often called

Polly-gamma function. For details see (Amos (1983)).

The equations in (3.2.4), (3.2.5), and (3.2.6) will be
solved using the same numerical analysis which used in
previous maximum likelihood estimation method.

3.3. Bayesian Estimators

Let X;, X,,---, X, be independent random samples,

drawn from the ELD as equations (2.1), (2.2). The
conjugate gamma prior distributions for 6 , « with

parameters (5,4), (17,¢) are employed respectively, as
follows:

5
9(0)= B~ go+1g-po

,0>0, 06,>0
r(9) (3.3.1)
&
g(a)=r’7—af+1e"79 050, &n>0
(¢) (3.3.2)

The non-informative prior distribution of A with
parameter p is:
g(A)=p (3.3.3)

So, the joint prior distribution for 8, « ,and A is:

O<p>w



American Journal of Applied Mathematics and Statistics 367

B n’

LT 5o afte 9759 (3.3.4)
royr?"

9(0,a,4)=

The posterior density of 8, «, and A2 Based on the
samples Xy, X,,--+, X,, and likelihood function is:

m(Q Xy, Xg,, X ) =
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L(Xy, X, X, )dQ
where Q is a vector of the parameters 6,« , and 4, and
L(Xy, X5,--+, X,,) is the likelihood function.
Now, the Bayes estimators of the parameters 4, « , and

A under symmetric square loss function can be obtained
by getting on the expectation of the marginal distribution
of these parameters. In addition, the marginal distribution

h(.| X1, X5+, X,y ) of any parameter can be obtained by
integration of the

(3.3.5)

posterior distribution

7Z'(Q| X1, Xg,0, Xn) with respect to other parameters. So,

the posterior distribution of the parameter 6, « , and 1
respectively, are:

h(6] X1, X5, X))
2% (3.3.6)
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00
h(2] Xy, Xp,0+, X )

(3.3.8)
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Consequently, the Bayes estimators of the parameters
6, , and A under symmetric square loss function

respectively, are:
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The Bayes risk of the parameters 6, « , and A based
on square error loss function, respectively, are:
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3.4. Quasi-Bayesian Estimators

The quasi-Bayesian estimation is similar to the quasi-
likelihood estimation in bath of them use the likelihood
function, however, the earlier is different because it uses
natural exponential of the quasi-likelihood function. For a
sample of size n which is taken from the ELD, the natural
exponential of the quasi-likelihood function is given by:

e el

Q*(x, 0, a, A)=e i<

{5 [efo-e) o] (4.0

By using the three prior distributions which discussed
in (3.3.1), (3.3.2) and (3.3.3) for the parameters 4, « , and

A respectively, then, the posterior distribution is:
7*(Qf X1, Xp, Xy ) =
p) €5+l a£+le—779—ﬂ9 Q*(X, 0’ a, l)

j j j p 09 o e 0B x(x 0, o, 1)dQ
000

(3.4.2)

Thus, the same technique for Bayesian estimation
method from (3.3.6) to (3.3.14) and with the help of
computer facilities will be used to evaluate the marginal

distribution  h*(.|X;, X+, X,) ,  quasi-Bayesian

estimators 6*, @*, and A* under symmetric square loss
function and Bayes risk for the parameters 6, «, and 1
respectively.

4. Simulation Study

The computer program MATHCAD (2001) is used to
obtain numerical illustration for the last theoretical results
for small, medium and large sample sizes. A comparison
between the four estimation methods will be performed.
1000 samples generated from ELD with parameters

(9, a ,/1) are used at different values of these parameters.
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Mean square errors (MSE) of the three parameters will be
calculated.

Table 1 indicates to that the quasi-likelihood and quasi-
Bayesian estimators for the two parameters @ and « are
better than the maximum likelihood and Bayesian - under
symmetric square loss function estimators at all sample
sizes respectively. Also, the performance of the quasi-
likelihood and quasi-Bayesian estimators for A are very

American Journal of Applied Mathematics and Statistics

close to the performance of the maximum likelihood and
Bayesian - under symmetric square loss function
estimators at all sample sizes respectively.

Through the results, we can see the mean square errors
MSE of all estimations are decreasing as the size of
sample is large. The quasi-Bayesian estimation is closest
method because it goes to the real parameter values.

Table 1.

n lparamete] MLE | MSE QMLE | MSE Bayes | MSE QBayes | MSE

0 0.618 0.278 0.255 0.024 0.508 0.277 0.134 0.024
10 a 0.397 0.431 0.808 0.034 0.287 0.43 0.687 0.034

A 1.016 0.045 1.11 0.021 0.906 0.044 0.989 0.021

0 0.49 0.182 0.237 0.011 0.38 0.181 0.116 0.011
20 a 0.551 0.315 0.819 0.017 0.441 0.314 0.698 0.017

A 0.932 0.019 1.106 0.019 0.822 0.018 0.985 0.019

0 0.459 0.155 0.224 0.001967 0.349 0.154 0.103 0.001967
30 a 0.585 0.291 0.829 0.005006 0.475 0.29 0.708 0.005006

A 0.903 0.013 1.104 0.018 0.793 0.012 0.983 0.018

0 0.372 0.088 0.222 0.0004727 0.262 0.087 0.101 0.0004727
40 a 0.681 0.2 0.831 0.00179 0.571 0.199 0.71 0.00179

A 0.869 0.012 1.103 0.017 0.759 0.011 0.982 0.017

0 0.278 0.035 0.224 0.0006819 0.168 0.034 0.103 0.0004669
50 a 0.828 0.124 0.832 0.001471 0.718 0.123 0.711 0.001471

A 0.851 0.012 1.103 0.017 0.741 0.011 0.982 0.017

5. Conclusion

This paper studied the estimation of parameters for the
Exponentiated Lomax Distribution via four estimation
method. These methods were maximum likelihood, quasi-
likelihood, Bayesian under symmetric square loss function
and quasi-Bayesian estimations. Numerical study was
investigated to illustrate the optimal procedure. When the
sample sizes are increasing, the mean square errors MSE
of all estimations are decreasing.
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