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1. Introduction ot ot ox2 T ax"

In [3], Husain et al. considered the following control f, :{ﬂii}
problem containing support functions: out ou? e

where superscripts denote the wvector components.
Similarly we have h, h,, h, and g, gy, g,. Designate
subject to by X. The space of continuously differentiable state

(CP): Mi(nxi’mizej‘( f(t,xu)+S(u(t)] K))dt

H . n _ _
x(a)=0, x(b)=0, 1) functions x:1 —R" such that x(a)=0 and x(b)=0

and is equipped with the norm ||x||= x| +|D|,, . and

x(t):h(t,x,u),tel @ U , the space of piecewise continuous control vector

g (t,x,u)+S(x(t)|Ci)£0, i—12.mtel (3) functions u:l —R™ having the uniform norm || .The

here differential equation (2) with initial conditions expressed
w

b
(i) x:1 > R" is a differentiable state vector function with  as x(t)= x(a)+jh(s, x(s),u(s))ds, te | may be written
its derivative x and u:1 — R™ is a smooth control vector a
function, as H=H(xu), where H:xxU AC(I,Rn),C(I,Rn)
(ii) R" denotes an n-dimensional Euclidean space and

] ) being the space of continuous function from | to R"
| =[a,b] is areal interval.

_ defined as H (x,u)(t)=h(t,x(t),u(t)). In the derivation
(i)  f:i1xR"xR™ >R, g IxR"xR" >R, i=12,..m  of the optimality conditions, some constraint qualification
and h:1xR"xR™ —» R" are continuously differentiable. to make the equality constraints locally solvable is needed.
) S K)and S ci) io12 h For this the Fre'che't derivative of
(iv) S(x(t)|K)an (X(t)l ) j=1,2,...,m. are the D ~H(xu)=Q(xu), (say) with respect to
suE)po_rt functions  of .the compact sets K and (x,u), namely Q' =Q'(x.u)=[D-H, (xu),-H, (x.u)] are
c (J :1,2,...,m) respectively. required to be surjective. Husain et al. [3] established the

Denote the partial derivatives of f where by f;, f, following Fritz type necessary conditions for the control
and f,, problem (CP):
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Proposition 1. (Fritz John Necessary Conditions): If
(X,T) is an optimal solution of (CP) and the Fre'che't

derivative Q' is surjective, then there exists Langrange
multipliers « € R and piecewise smooth A1:1 —R™,

u:l>R", z:1—>R™and @l : 1 = R" such that for all t,

m

at (LX) + Y A0 (1) g) (tX,T)+ 0 (1))

=1

(a,A(t),u(t))=0,tel

As in [5], Husain et al. [3] pointed out if the optimal
solution for (CP) is normal, then the Fritz John type
optimal conditions reduce to the following Karush-Kuhn-
Tucker optimal conditions:

Proposition 2. If (X,T) is an optimal solution and is
normal and Q' is surjective, there exist piecewise smooth
A0 =>R™ with AT = (A, dp, e Ay )y Uil >R,

z:1 >R"and @ :1 >R", j=1,2,...,m such that

=1 (4)

®)
+u(t) by (LX,T)=0,tel
> (1)(ed (Lx0)+x (M) (1)=0.tel  ©
i
u(t)" z(t)=S(x(t)|K) ¢

() o) ()=5(x()IC), j=12.m  ©®

At)=0,tel, j=1,2,..,m. 9
z(t)eK,w! (t)eCl, j=1,2,.,m. (10)
Using the Karush-Kuhn-Tucker type necessary

optimality conditions, Husain et al. [3] constructed the

following Wolf type dual control problem to (CP) and
proved various duality results:

f(t,x,u)+u()" 2(t)
o mo . gj(t,x,u)
(WCD): Maximize |{+)> A (t i dt
II le ()[H(t)Tw’(t)}

ea(®) (n(txu)-x(0)

subject to

m
«(tx,u) +Z/1' (

j=1
+u®)h, - at)=0,tel

fu(t,x,u)+/1T (t)g(t,x,u)+y(t)Thu=0,te|
At)20,tel,i=12,.,m
z(t)e K, o (t)eCi,i=1,2,...,m
The problem (WCD) is a dual to (CP) assuming

that I{f +_ﬁf O07 )+ ) +4" (t)(h—)‘((t))}dt
| =1

is pseudo convex in (x,u) for all z(t)e R™ and

o (t)eR", j=12,..,m

Husain et al. [4] further weakened the generalized
convexity for duality by constructing a Mond-Weir type
dual to (CP) given below.

(M-WCD): Maximize I{f (t,x,u)+uT (t)z(t)}dt
|
subject to

x(a)=0=x(b)

fi (t,x,u)+ Z/lj (t)(g){ (txu)+x(t) o' (t))
j=1
+u(t) he(tx,u)=4(t), tel

fo (tx,u)+z+2'g, (t,x,u)+,u(t)T hy (t,x,u)=0,tel

i/‘t'f{gj t,x,u +x(t)T

=1

[ ()" (h(t,xu)-%)dt>0

a)j}dtZO

A(t)=0,tel
z(t)eK
ol (t)eCl, j=1,2,..m
where
() Kand C!,j=12,..,

(i) 2:1 >R™Mw:1 >R" and x:1 — R" are piecewise
smooth functions and

m are compact sets in R" and
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Husain et al. [4] proved duality theorems for the

problem (CP) and (M-WCD) under the assumptions of
pseudoconvexity of _[{f (t,',o)+(~)z(t)}dt for z(t)eK
|
and quasi convexity of ijﬂ‘ (t)(gj(t,.,.)-*-(‘)T a)j(t))dt
=

and L u" (t)(h(t —x(-))dt for all

wl(t)eCl, j=12,.,m

We review some well known facts about a support
function for easy reference. Let " be a compact convex

set in R". Then the support function of I' denoted by
S(x(t)|T) is defined as

S(x(t)|T) = max{x(t)T o(t):v(t)er, te |}

A support function, being convex and everywhere finite,

has a subdifferential in the sense of convex analysis, that
is, there exists z such that

S(y(t)|F)2S(x(t)|F)+z(t)T(y(t)—x(t)) for all

x. The subdifferential of S(x(t)|T) is given by

S(x(1)IT)={z(t) eT:z(t) x(t)=S(x(1)IT)}.  Let
Np-(x(t)) be normal cone at a point x(t)eTI. Then

y(t)e Ny (x) if and only if S(y(t)|T)=x(t)" y(t) or
equivalently, x(t) is in the subdifferential of s at y(t).

In this paper, we propose a generalized dual to (CP) and
prove various duality theorems under appropriate
generalized convexity assumption. From our duality
results, special cases are deduced and it is shown that our
results derived in this research can be considered as
dynamic  generalization of those of nonlinear
programming problems having support functions.

2. Generalized Duality

Let M={12..,m}, N={L2,..,n}, 1, cM,a=01..r

;
with 1, N1z =g, a#p and (J1,=M,and J, =N,
a=0

r
a=01,..r with J,NJgz=¢, a=pand (]I, =
a=0
We propose the following generalized dual to the
problem (CP) and prove various duality theorem under
appropriate generalized convexity condition:

f(t,x,u)+u('F)

—
N
—~~
—
N—

- o (gt (txw)

(GCD): Maximize||+ » A (t i dt
% ()Lx(t)%'(t)]

+ > !

i<io

subject to

x(a)=0, x(b)=0 (11)

w (tx,u) 2/1' (t,x,u)+ o (t)) (19)
+4(t )hx(t,x,u)+,u( )=0,tel

fu (txu)+2z(t)+ AT (1) gy (txu) (13)

+u(t) hy (txu)=0,tel

[ Z 2 0o (txu)+u@) o (0)de=0,a=12...r (14)

|iely,

J'Zy (h‘txu)

J(1))dt=0, @ =12,..,r (15)
| jedy

A(t)=0,i=12..,m (16)

2(t)eK, o' (t)eC',i=12,.,m 17

Theorem 1 (Weak duality): let (X,U) be feasible for

(CP) and (x,u,l,z,y,a)l,...,a)m) with AT =(11,...,1m)
and 4" :(,ul,...,,um) feasible for (GCD). If for all

feasible (Y,U,y,x,u,/l,z,a)l,...,wm),

f(t,.)+() z(t)
+3 A m(e'(

ielp

+ 3 W ((n (e

iedo

is pseudoconvex, and A (t gi(t,.,.)- Ddt, and
i IZ[ ()L(-)Tw'(t)
[ 2 (#o(ne

a=12,..,r are
1 jedy

quasiconvex, then

inf (CP) > Sup(GCD).

)+() @ (1))t
)= ()

—_——

) =X () Jat

Proof: Since (X,U) is feasible for (CP) and
m

(x,u,/l,z,,u,a)

[ 32w

liely

is feasible for (GCD), we have

LX0)+X(0) o (1))t

S!E Al (t)(g(Y )+ x(0) o (1))dt @ =1.2,...7
and )
!g #(©)(h (L%,3) -5 (1)) ot
<IJ:ZJﬂ (O)( (txu)-x) ())dt, a=12...,
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By the quasiconvexity of > [’ (t)[gi (t'x'u)_ Jdt
iela | +u(t) o' (1)

and )’ I U
jedg |
above inequality respectively yields,

{< o (5 (000 <t))}dt<o

Hu-u) g,/ (txv)

(h’txu )dt a=12,..,r, the

X [

icly |

and

i<da 1 |+(@—u)" 4 ()N (tx.u)

2:1{ o (v <>h%txu>f“ﬁﬂ}mgo

Hence

> AW

ieM-lg |

{ x)' (o (txu)m(t))}dt<0
+(U—u) gui(t,x,u)

and

dt <0.

J(FwWMOWHwMﬁMUD
()] (txu)

Combining the above inequalities and the using
equality constraints (12) and (13), we have

)

ieN=301 [+(T-u)"

- T i t X, U)
X —X (t,x,u) A
oo gl 55
I+Z( txu)+/1()) dt > 0.
RN
(txu)+ > /1' (t.x,u)
+(T-u)’ IEIO
(@) + L (t.x,u)
i 1edo 1
This, because of pseudoconvexity of
. o9 ()
F(t) () 2(0)+ 3 4 (t){g - ]
i 5 0ol
e 3 W (0 () -3 ()
Jedo

at (X,U),we have

f(txu)+u’ ()z(t)+ Y A (t
>J iely
LY (hJ (t,x,u)=x (t))

jeJg

[(txu) J
x(1)" o' (1)l

Using U(t)T z(t)<s(T(t)[K) and

X(t) ol (t)<s Y(t)‘cj), j=12,..,m, together with

feasibility of (X,r) for (CP) in the above inequality, we
have

[{f(xa)+s(T(t)|K)}dt
|

f(txu)+u’ (H)z(t)+ Y A t){gl(t'x’u)_ J
> | iclp (1) o' (1)) gy

He Y wl(t (h’txu) J(t))

jedg

yielding
inf (CP) > Sup(GCD).

Theorem 2 (Strong Duality): if (X,0) is an optimal
solution of (CP) and is normal , then there exist piecewise
smooth z:1 »R", u:1 >R", A':1 >R, i=12..m
and o 1 SR, j=12,...m such that
(Y,LT,7,/11,...,/1m,a)1,...,a)m,/1) is feasible for (GCD),

and the corresponding values of (CP) and (GCD) are equal.
If the hypotheses of Theorem 1 hold, then

(7,17,7, ll,...,/lm,wl,...,wm,y) is an optimal solution of
(GCD).
Proof: Since (X,T) is an optimal solution of (CP) and is
normal , then from Proposition 2, there exist piecewise
smooth z:1 —R", A1 SR, ji=12,..m ,
j=12,..,n and u:1 —>R" such that
(4)-(10) hold. So
(Y,U,Z,/il,...,ﬂm L@, a)m,,u) is feasible for (GCD) and

in view of conditions (4), (5), (6), (9) and (10), the

w1 >R,
conditions

equality of the objective functionals follows. If
(L) + () 2+ 3 A ()0 (6 + () @' (1))
I ) ) '<lo ) dt is
|+ yJ(t)(hJ(t,.,.)H’(J(.))
ieio

pseudoconvex, and >’ jli (t)(gi (t)+()T o (t)) dt

iclg |
and )’ ij(t) h!
Jeio
all z(t)eK and a)j(t)eCj, j=12,..,m , then from

t )—)‘(j (t)) dt are quasiconvex for

Theorem 1 (Y,U,f,ﬂl,...,/lm,a)l,...,a)m,,u) must be an

optimal solution of (GCD).
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Theorem 3 (Strict converse duality): Let the problem
(CP) have an optimal solution (X,T) that satisfies the

normality condition and ()“(,0,/1 v AME O c?)m)

be optimal solution of (GCD) if
o 96 J
f(t..)+ A'( .
_[ 'ga {*'() ol (t) )] gt is
ED> yj(t)(hj(t,.,.)ﬂ'((.))
J€lo

strictly pseudoconvex, and A (t gi(t"")_ }dt
" I{% ({wfwww

and J.{ > ) (t)(hj (t,.,.)+>’<j ())}dt are quasi convex
1 (J€)o

forall zeK, o) eCJ,j=12,.,m, then (X,T)=(%0),
i.e., (X,0) is an optimal solution of (CP).

)#(X,0) and exhibit a
contradiction, since (X,U) is an optimal solution of (CP),
it follows from  Theorem 2  there  exist
201 5R, (i=12,.,m), @ 1 5>R", (j=12..,m)

and s —-R"(j=12,..,m),

Proof: We shall assume that (Y,U

such that

(Y,U,f,ﬂ_l,...,/Tm,ﬁl,...,ﬁ”,a_)l,...,a_)”) is an optimal

solution of (GCD). Hence

fLxo)+u z+ Y 2 (o' (tX,0)+a (1))
- - ielp dt
H+ 2 7 () (Lxm)-%)
i€do
f(L&0)+02+ 3 2 (o' (t2,0)+8' (1))
_ - - ielp at
! + 2 /}J(t)(hl(t,f(,ﬁ)—f()
i€do
together with the feasibility of (X,u) for (CP) and
(f(,a,il, L 3 ) for (GCD)
(1) @ (t)=8(x(t)IC)), for @) eC, j=12,..m
we have
; [ ((g'(t,Y,U)+7(t)T > (t)))dt

jely
Also
3 [ @0 (@ xm)-x (1))t
jedg |
< Y [Al)(n (t%,0)-Ka)dt, a=12...,
j€dg 1

These, because of quasiconvexity hypothesis and
merging their implication and then using equality
constraints of (GCD), we have

i L . gl t,%,0) ]
f(t,x,u)+ > 4 .
(x-%)! ) iezlo [Hb' (t) J
+ 2 (A7 (e R0))+ 4 (1)
Jelo dt>0
' fu(t%0)+ 3 A'gl (t.%.0)
+(U—G)T Y .IEIOA .
+.Z a'n (t,x,u))
L jedg ]

o 80)
f(t..) A ‘
j ( ga {+() w](t)J dt,
lfzuwwﬂawhﬂ»
iio
implies

f(t,%,0) +uz+2&'( U)+xTa))
I ielp at

e L (hJ txu)+x‘)
i€do
(t2,0)+ > 2'(g) (1 %0 +xTa)')
> I Ielo- dt
[+ [zJ(t)(hJ(t,f(,G)H“(J)
jedp

Il

[ S—
=
o

Q.

—

This in view of (2) and (3), yields.

j(f(tm)w(f 2(t))at
>j( tyf

t,X,0)+0( f(t))dt,
which gives

dt>[u'z(t)dt

[T ()

In  view of T'2(t)< s(T(t)IK) and
U’ (t)Z(t)<S(u(t)|K), thisimplies

js t)|K)dt > [s(T(t)|K)dt,

which is absurd. Hence (X,T) =(&,0).

3. Converse Duality
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In this section, we shall prove the converse duality
under the assumption f,gand h are twice continuously

differentiable. The problem (GCD) may be written in the
following form:

Maximize z//(t,x,u,z,/ll,...,/im,yl,...,y”,a)l,...,a)m)

subject to
x(a)=0=x(b)
t,x(t),u(t),z(t), A%, A™,
A[tx(.00).20) ot
ey @™ g ™

ﬂm,,ul,...,,um):Q tel

0% (tx(t).u(t),2(t), A
S A9 @) x () o (1))t=0,a=12..

ZJ./“ (h’txu)+x())dt>0a 12,..
j€dg |
A(t)20,tel,i=12,..,m
2(t)eK, o' (t)eC', tel, j=12,..,m
where
o 6'()
-1, zz ()0l (V+0' () + () h+(t)’
02 =0 ()=, +2+ AT gy + uh,
with fy = f (L x(t).u(t)), g = gy (t.x(t),u(t)),
hy =hy (t,x(t),u(t)), etc.
Consider 6| )0 AC). ) ] as defining a
a()2(), @ ()™ ()
mapping (1) X xU x AxV xZ xW —» B! and

O x() () 2() (). 2(). @ ()sn0™ () as
defining a mapping Q(Z):X xU x AxV xZ xW —> B2

where (i) B! and B? are Banach spaces,
(i) A,V,Z and W are spaces of piecewise smooth

functions A, x4, zand w:(wl,...,wm).

In order to apply the results of [1], some restrictions are
required on the equality constraints Hl() =0 and
6%()=0. It

o™ =(0}.0}.0}.0}.0}) and ¥ =(Q},07,07.Q2.Q})
have weak * closed range. In the following theorem, we
write f = f(t,x,u), g=g(t,x,u) and h=h(t,x,u).

Theorem 4 (Converse Duality): Assume that
(Cy: f, g and h are twice continuously differentiable.

suffices if the Fre'che’'t derivatives

(Cy): Q’1 and Q’2 have weak * closed range.

(Cy):
' () + (o’
][ z+lezli)/1 (t) .y ﬂi(t)[h{(t"“)} dt is
iedo =i (t)
pseudoconvex.
(Cy): > I/ii (t)(gi (t )—()a)J) dt. and
icly |
> ij (t)(hj (t —x! (t)) dt are quasiconvex,
jedg |
(Cs): ja o(t)dt=0o(t)=0,tel, where o(t) is

an approprlate vector function, and

T T
fxx+/1(t) Oxx fux"’l(t) Gux

T T
_ +,u() Py +,U(t) hux
T
fXUJ”I() O fuu +4(t) G
T T
+4(t) My +u(t) hyy
(Co): u(a)=p(b)
and
> 2 () gk +a'),
Cy: e are linearly
wohl+il)a=12...r
jela
independent.
Then (X,U) is an optimal solution of (CP) and the

optimal values of (CP) and (GCD) are equal.

Proof: Since (x,u,/T1 /Im,f,ﬁl,...,ﬁmﬁl,...@m) is

an optimal solution of (GCD), by Proposition 1 there exist

Langranges multipliers 7eR, piecewise smooth
B:1>R", r:1->R™ p:1-5R™ L eR and
ri, a=12,..r, ri,a =1,2,...,r such that

{Hz» o))+ z(m(t)hng)J

ielp jeJo
B0 (for 20 g+ (1) D)
sr(t)f ( i+ A ()T gy + (1) hux) (18)

+Zr: z’i [ Z li (t)(g;( +coi )J

a=1 ielp

+Zrlf§[ > (ﬂj (t)h) + ) (t))J:o, tel

jedy

r[fu+z+ > A tel+ > yj(t)huj]

ielp jeJo

(1) fau+ 20 g+ (1)
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+r(t)T[f”“”( g“”} Y {Zz‘mg;}

+u(t) h =1 ely (19)

Z [Zy hJ]—Otel

a=1

(g +X a))+ﬁ() (g;+a)i)

(20)
+r(t) gl +7' (t)=0,iely, tel
(0" +xT ! )+ B0 (g)+o') o
+r(t) gu+77 (t)=0,iela,a=1,2,..,r,te|

o(d =)+ BT Mr(t) W = 4() tel (22)

e (0 =30 )+ AR +r (0 0 = B (1),
tel,ied,, a=12,.,r

(23)

A ()x+ B0 (1) e-N (o) icly @)

B+ ()xe-N_ (o) i€y, a=12..r (25)
au+r(t) e —Nyg (z) (26)
% X JAN (g +x ol Jdt=0 27)
icly |
2 3 Jud () +x)dt=0 (28)
j€dg |
n A=0 (29)
(r,n(t),r%,...,r},rf ..... z'rz)ZO,tel (30)

r§)¢o,te| (31)

Multiplying (21) by Z'(t),iel,, @=12,..,r and

using (29), we have

APNACI IR

liely

A" X A (g o)t

[r() {ZI: A (gix +ao )Jdt =0

From (27), we have

tf[}jﬂﬁx®+dﬂ

icly

B(
! -
+r(t)['zll Al (t)g;(}

dt=0

which can be written as

z A (t)(gi( +a)i)

(ORI

iely

dt=0 (32

Multiplying (23) by yj(t), jedy, a=12,.r, we
have

ﬂ(t)[_z ﬂj(t)hix]
2] X W@ -x)aeft ot
| +7<t>[_z ujmh;}
=[ 2w A
| jedy

From (28), we have

] {ﬂ(t)[ > uj(t)h‘x}y(t)[ > /Jj(t)hlijJ}dt

| jedy jelg

=2 ‘t_Z— > [ (t)p(t)t
jely jelg

(by integrating by parts)
which on using the hypothesis (Cs), given in the relation
can be written in the matrix form as

z ,u h]+/1 ()
If(ﬂ(t)!y(t)) < S (O dt=0. (33)
jedgy

Using the equation constraints of (GCD), in (18) and
(19) respectively. We have

ERS BRIECe)

+i(r§_1)[ > () (01 +ﬂj(t))J (34)

a=1 jedy
A (it 40" Gt (1) )
+7(t)T (fux +A(t ) Jux +/¢(t)T hux):O, tel
and

i(w)[z e ]

a=1 icly,

+i(%2c—f)[ )y #j(t)hujJ (35)

a=1 jely

+,[3’('[)T ( U +/1(t)T Owu +y('[)T hxu)

+7(1) (fuu+l() Guu + 4(1) huu)=0,te|
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Combining (34) and (35), we have

. A (1)(gx+o)

+Z(r§ -7

T
fx +A(1) Oyx

) jedg

() ¥ Al

iely

> () (O)hl+4) (1))

i€dq

ALY

T
fux +A(t) Gux

. +u(t) +u(t) hy
fxu +’1(I)T O fu +’1(I)T Juu
+/‘(t)T P +ﬂ(t)T huu

|

7(t)

Ppremultiplying by (3(t),7(t)), this gives

+J(p@).7(1))

2 (1) gk +o)

> A(ay

iely

> (#dOnd+ 4 (1)

2wl -7 (8.7 (1) > i

fu
+4 (t )T Oxu

+u (t)T hyu

i€y

fuu
'M'(t)T uu
+,U(t)T huu

This, on using (32) and (33) gives

[(B(t).7(1))

fXX
#2(0)" g
+u(t)" hy
fXU
+2()" gy
+u(t)" hy,

fUX
2 (1) gux
+u(t)! hyy
fuu
+2()" gy
+u(t) hy,

dt

3Ly

In view of the hypothesis (C,), this yields
Bt)=0=yp(t), tel
Using (36), we have

a=1

r
+Z(r§
a=1

Zr:(ri —7)[ z A (t

iely

)9} + )]

—r)[_z (# (t)n) +pi<t))}=
iedy

0.

dt

(36)

0.

This because of (Cg), yields

Ttlz—Z'=0, r§—7=0,
a=12,..r

If 7=0, then r:; =0=r§, a=12,..r. and from (20)

and (21), we have (t)=0,tel .
12 2
Tr‘TlW’Tr,J:O,

A1) 7 (t).m(t)
t e | ensuing a contradiction to (31).

Hence >0, implying ré >0, 102, >0,a=12,..,r .
From (20) together with (21) and (22) together with (23),
we have

1
T,T e

Consequently, we have [

gl +x"@ <0, tel (37)
li(gL+YT5i)=O,ieI0 (39)
h'—x =0,tel (39)
#R)(nt-xT)=0tel, jel, (40)

The relations (24)-(26), we have
(1) o) (t)=8(x()ICT), j=12..m  (4D)
a(t) z(t)=S(T|K) (42)

From (37), (39) and (41), we have
o' (tX,0)+8(X(1)IC')<0,i=12,.,m
and
h(t,x,a)-X =0.

implying that (X, ) is feasible for (CP).
From (38), (40) and (42), we have

J(F(txT)+S(u(t)[K))dt

+ 22 (00" (6 x)+XT@ (1))t

Il
—'—.

In view of the hypotheses (Cs) and (C,), by Theorem 1,
the optimality of (X, ) for (CP) follows.

4. Special Cases

If Ip=M and Jy =N, then (GCD) becomes (WCD)

which is Wolfe type dual to (CD) under the
pseudoconvexity of
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o' () J
+() o' () ) | dt.

f(t,..)+

50
+u(t)" (h(t)+%())

If Ig=¢ and 1, =M, (for some o €{1,2,...,r}), then
(GCD) becomes (M-WCD) is a Mond-Weir type dual to

(CP) if j(f(t

J

+(.)T z(t)) dt is pseudoconvex, and

' ) an T (h(t) are
30 [ O o (t)J ot and J0) )

quasmonvex.

Let B(t) and Dj(t),(j:l,Z,...,m) be positive semi

definite matrices and continuous on | Then
o

S(u(t) K)=(x(1) B(O)x(1)] .tel where

K={B(t)z(t)‘z(t)TB(t)z(t)ﬁl,tel} and

s(x(t)1C7) = (x(v)" Dj(t)x(t))%,tel, j=12,.,m

where c! :{Dj(t)a)j (t)‘a)j (1) DI (t)o! (1) <1 te |}.
Replacing the support function by its corresponding
square root of a quadratic form, we have

(CPy): Minimize J'{f(t,x,u)+5(u(t)| K)} dt

subject to
x(a)=0=x(b)
gl (t,x,u)+(x(t)T DI (t)x(t))% <0tel,j=12..,m
h(t,x,u)=x(t), tel
f(t,xu)+u(t) B(t)z(t)
o g'(t,x,u)
(GCDy): Maximize Al (1) dt
I 52) [+X(t) D' (t)o' (¢ )}
+ Yl (t (hJ (t,x,u)- x‘(t))
jedg
subject to
x(a)=0=x(b)
f (txu)+ B(t)z(t)+gli (t)[iiXD(it(’tX)’:i)(tJ

+u(t) hy

fu (t,x,u)+B(1)z(1)+ (1) gy (txu)
+u(t) by (Lxu)=0,tel

=a(t), tel

2(t) B(t)z(t)<L tel

J()<itel, j=12,.,m

® (t)D! (H)o
> [A (00" (txu)+ D (O)x(1)) dt>0, @ =1.2,..,7

icly |

> ult

iely

(0 (tu)=x) (1)) dt =0, @ =121

At)20,tel,i=12,.,m,

These dual models are not explicitly reported in the
literature. However, the duality relationship between (CDy)
and (GCDy) can be established analogously to that of the
problem of preceding section.

5. Nonlinear Programming Problem

If all the functions involved in the formulation of (CP)
and (GCD) are independent of t, these problem reduce to
the following nonlinear programming problems with
support functions which do not appear in the literature.

(NP): Minimize f(x,u)+S(u|K)
subject to

gj(x,u)+s(x|cj)so, i=12,..m

fy (X, u)+uTz

(GND): Maximize + > ,1'( X, u)+XTa)i)

ielpg
+ u"hi(x,u)
Jejo
subject to
mo .
fX(x,u)+Z/1'(gi((x,u)+a)')+yThX(x,u):0

i=1
fu (xu)+z+A7 gy (xu)+ ' hy (x,u)=0,
zeK and o eCl j=12,.,m
> A g (vu)+xT o' )20, a=12,.1
icly
> whi(xu)20 a=12,..r
Jejg
A(t)20, tel,i=12,.,m
Ignoring h(x,u) and replacing f(x,u),g(xu) and
s(u|K) by f(x), g(x)and s(x|K)respectively, we get
the following problems studied by Husain and Jabeen [2]:
Primal (P;): Minimize f (x)+s(x|K)
subject to
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f(x)+xTz

Dual (GD): Maximize + »_ Al (gi + xTa)i)

subject to

ielp

+ Y whi(x)

jedo

m o
f () +z+Y AT (g;(+a)'):0
i=1

mo .
> A g'+xT@')20, @ =121

icly

S W) N (x)20a=12,.,r

NP

7eK, 0 eC'i=12,.,m.
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