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Abstract  Seasonality accounts majorly for quarterly and monthly movements in macro-economics and time series 

and in modelling such patterns to have a forecasting robustness, precision and reliability have been steadily 

increased in recent years but no consensus has been reached as to which model yields the appropriate description. 

However, this research seeks to address the robustness and accuracy of seasonal ARIMA model of Naira/Dollar 

exchange rate using a monthly data for the period of Jan 1994 to July 2013. The series was subjected to a time plot 

revealing seasonal patterns and upward trend. Both behaviours were taken into account by moving average and 

seasonal moving average, where little or fewer months of data were used to estimate the local level and trend and 

also few seasons of data were averaged over to estimate the seasonal patterns. The proposed model shows predictive 

power, robustness and precision which was revealed by the normality of data and residual analysis. The estimated 

forecast values from our proposed model are more realistic and closely reflect in the current economic reality in two 

countries as indicated by the forecast measurement criteria. 
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1. Introduction 

Seasonality has been a major check in time series 

majorly in business and economic time series. Seasonality 

reveals itself when there is no periodicity. Seasonality in 

time series is a regular pattern of changes that repeats 

itself over S time period, where S defines the number of 

time periods until the regular pattern changes. Seasonality 

occurs in monthly data in which high values tend always 

to occur in some particular months and low values tends 

to always to occur in other particular months. In this case, 

S=12 (months per year) is the span of the periodic 

seasonal behaviour, for quarterly data S=4. Using the span 

of seasonality, one can predict the current month value 

using Box Jenkins (1976), for example a seasonal first 

order autoregressive model would use 12tx   to predict tx , 

for second order autoregressive would use 12tx  and 24tx   

to predict tx . However, seasonality often accounts for 

major part in quarterly and monthly movement in some 

macro- economic time series, and modelling and 

forecasting of such patterns has been steadily increased in 

recent years, but no consensus has been revealed as to 

which model yields the appropriate description. The most 

popular model used in seasonality in the literature are (i) 

seasonal with unit root (ii) model in first and second 

difference (iii) periodic models (iv) models with a 

constant. Osborn (2001), then Franses and Paap (2001) 

have studied the relative performance of these models. 

However, this research entails to justify whether seasonal 

ARIMA model has a predictive/ forecasting power to 

predict economic time series future values (out sample 

forecast) and within sample in foreign market usage and 

these will be judge under the instrument of the 

measurement criteria mean square error, mean absolute 

error and mean absolute percentage error. The analysis 

will be carried out in the software use of E-view 6.0. The 

remaining part of this paper is section as follows: section 

2 covers the data source, theory and methodology, section 

3 discusses the results and lastly section 4 focuses on 

conclusions and possible recommendation. 

2. Data source, Theory and Methodology 

2.1. Data Source 

In carrying out this research, a monthly time series data 

on Nigeria exchange rate (naira against the US dollar) for 

period from January 1994 to July 2013 was collected from 

the website www.oanda.com. This data has two 

components, the dependent variable and independent 

variable. The dependent variable is the exchange rate 

while the independent variable is the time and time 

component is in months. Figure 1 shows the time plot of 
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the series which aids to know the presence of outliers and 

the judge for Stationarity using E-view 6.0. 
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Figure 1. The plot of Naira/dollar exchange rate for the period Jan 1994 

to Jul 2013 

2.2. Theory 

Box Jenkins (1976), Chatfield (1975), and Brillinger 

(2008) in the literature have discussed several procedures 

in building ARIMA modelling. The seasonal ARIMA 

incorporates both seasonal and non-seasonal factors in 

multiplicative model. The shorthand notation of the model 

is: 

 ( ) ( , , ) ( , , )t sx ARIMA p d q P D Q     (1) 

Where p = non-seasonal AR order P = seasonal 

AR order q = non-seasonal MA order Q = seasonal 

MA order d = non-seasonal differencing D =seasonal 

differencing, s = time span of repeating seasonal patterns. 

Without any differencing operators, the Eq (1) could be 

written more formally as 

 ( ) ( )( ) ( ) ( )s s
t tB B x B B        (2) 

The non-seasonal components are: 

 2
1 2: ( ) 1 p

pAR B B B B         (3) 

 2
1 2: ( ) 1 q

qMA B B B B        (4) 

The seasonal components are: 

 2
1 2Seasonal : ( ) 1s s s Ps

pAR B B B B        (5) 

 2
1 2Seasonal : ( ) 1s s s Qs

qMA B B B B        (6) 

Where (/ /,  /  /, 1) ,  (/ /,  /  / < 1)    satisfies the 

Stationarity and invertibility conditions. Also each 

coefficient is defined as the root of the characteristics 

equation (3-6). 

Mere looking at Eq. (2), the seasonal and non-seasonal 

AR component multiply each other at the left and side, the 

seasonal and non-seasonal MA component multiply each 

other at the other side which shows that it incorporates 

both seasonal and non-seasonal factors. 

2.3. Methodology 

To carry out the aim of this research, we encompass a 

time plot which aids in describing the pattern and general 

behaviour of the series. The series was examined for 

Stationarity, outliers and other interventions. Since our 

data is a monthly data, we look straight in the time plot 

and found if there is any seasonal pattern: 

If there is seasonality and no trend, then a difference of 

lag (S) is taken (12
th

 month differencing). 

If there is linear trend and no obvious seasonality, a 

first difference will make it Stationary or if otherwise, a 

curve trend exhibits, a proper transformation of the series 

is needed. 

If there is both trend and seasonality, a non-seasonal 

difference and a seasonal difference is applied to the data 

as two successive operators, which means we are to 

examine the ACF and PACF of : 

        
12

1 12 131 1 t t t t tB B x x x x x         (7) 

Where 1tx  = one lag time period of tx = naira/dollar 

exchange rate 
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To determine the ACF and the PACF of Eq. (7), it 

requires a lot of guessing. This guessing will be used in 

choosing the seasonal and non-seasonal orders of AR and 

MA. 

For non-seasonal terms: we examine the earliest lags (1, 

2, and 3) to judge non-seasonal terms. Spikes in the ACF 

(at low lags) indicates the non-seasonal MA terms, also 

spikes in the PACF (at low lags) indicates possible non-

seasonal AR terms. 

For seasonal terms: we examine the patterns across lags 

that are multiple of S = 12 months (12, 24, 36). Spikes in 

the ACF (at lag 12, 24) indicates seasonal MA terms, 

likewise also spikes in the PACF (at lag 12, 24) indicates 

seasonal AR terms. 

Next is to build the seasonal ARIMA in which we are 

to estimate the parameters. The parameters of seasonal 

ARIMA always tend to be small but depend on large 

observations (sample points). 

2.3.1. Model Diagnosis 

To check for the adequacy of the estimated seasonal 

ARIMA model, the fitted model is subjected to model 

diagnosis by the LM test, R
2
, and the appropriate model is 

determined by the forecasting criteria. The error term is 

expected to normally distributed i. e identically distributed. 

We check this by testing the null hypothesis of white 

noise residual. Following the Ljung Box (1978), the 

variance of the autocorrelation is given by: 
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where K-1=k-p-q and p+q does not include in the constant 

tern. 

For LM test of serial correlation, we test for AR (p) 

errors in: 

 1 1the auxilary linear modeˆ ˆ ˆl+ ...t t r t r ta a a u      (10) 

where  2
t tâ  = the residual at time "t", u 0, uN  . 

The null hypothesis is: 

 

0 1 2 r

1 1

: 0 and 0 and ... 0

(No serial correlation up to the r - th order)

H :  At least one 0

H   



  



 (11) 

Test statistics:  

  2 2
rn r R X  . Note, no obvious answer as reached 

in determining the value of (r) in the empirical studies but 

for AR, ARMA: r = p+1 lags, for seasonal r = s, where s is 

the span of periodicity. 

A further test for normality is judged by plotting the 

ACF of residual of the estimated model, if the ACF hovers 

around the line then the model is adequate; hence a trivial 

solution or the model built in Eq. (2) is revised. When the 

model is adequate, forecast is implemented. 

Forecast of seasonal ARIMA are computed for both in 

sample and out sample values. The optimum forecast 

value are evaluated using the mean squared error (MSE) 

which measures the average of squared error over the 

sample period, mean percentage error (MPE) which 

measures the average of percentage error by which 

forecast differs from outcomes, mean absolute error which 

measures the average of absolute error dollar amount or 

percentage points by which forecast differs from outcome. 
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2
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 (15) 

Where t = s, 1+s, …, k + s, and the actual and predicted 

value for corresponding t values are denoted by ˆ
tX and 

tX  respectively. 

The smaller value of Eq (12), Eq (13), Eq (14) and Eq 

(15) gives the best seasonal model. 

3. Discussion and Results 
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Figure 2. D_rate is the combined first difference and 12th seasonal 

differences. 

 

Figure 3. Autocorrelation function and Partial autocorrelation function 

values at lag 55 of the differenced series for the period Jan 1994 to July 

2013. *** Indicates that there are spikes at the lags 1, 12, 13 under the 

ACF and likewise also at lags 1, 12, 24, 36 and 48 under PACF and these 

can be easily seen in figure 4 

Following the figure 1 which shows the time plot of 

Naira/US Dollar exchange rate, indicates that there is 
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some kind of non-Stationarity and a possible non-linearity 

in the observed data. Further observations shows that there 

is an upward trend from the period of 2000 till 2003 and 

further maintain stable pattern till 2007, depreciated in 

2008, maintain stability till 2009 and rising up in year 

2009 till August 2013. The fluctuation in the observed 

data points across the period indicates the presence of 

seasonal patterns. To remove such trends and seasonality a 

first difference and 12
th

 seasonal difference was applied to 

the original data series respectively. Figure 2 below shows 

the graph of the differences applied.  

From the graph above, it shows that seasonal pattern 

has been depressed to an extent and the mean reversion of 

the data’s at each point is constant over time after taking 

account of the differences. There is just an indication of 

peak in the year 1995 and trough in the year 1997 and 

which is reasonable to an extent. Since there is control of 

seasonality and trend, we moved ahead and take account 

on seasonal and non – seasonal terms. To determine the 

seasonal terms and non – seasonal terms we plot the 

autocorrelation values against the lags taken account on 

the differenced series. We had 222 observations, 55 lags 

was examined according to Gujarati (2006) on the 

maximum lag selection. Figure 3 and Figure 4 displays the 

ACF, PACF values, and the plot of correlogram, partial 

correlogram respectively. 
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Figure 4. (The plot of Autocorrelation function and Partial autocorrelation function up to lag 55 of the differenced series for the period Jan 1994 to July 

2013 sd_d_rate means the seasonal difference of the first difference of naira/dollar exchange rate 

Following Figure 4 above under the ACF, we can see 

that there is a spike at lag 1, its ACF value is more than 

zero but it is significant. We can add an MA (1) to account 

for the non – seasonal MA terms. Considering the 

multiples lags of seasonal period (12) i.e. (12,24,36,48) 

lags under ACF, it shows that only at lag 12 shows a spike 

or autocorrelation and the rest of the lags hovers around 

the line, hence we can add SMA (1) to account for the 

seasonal MA terms. Under the PACF at lag 1, there is a 

spike where its PACF is greater than zero but also 

significant. Hence we can add an AR (1) to account for the 

non – seasonal AR terms. Mere looking at multiple lags of 

seasonal period (12) i.e. (12, 24, 36, 48) under PACF, it 

shows that there are spikes at each lags which accounts for 

seasonal AR (terms). Since we have spikes at lag 12, 24, 

36, and 48 under PACF, hence we compared the following 

seasonal ARIMA models: ARIMA    
12

1,1,1 1,1,1 , 

ARIMA    
12

1,1,1 2,1,1 , ARIMA    
12

1,1,1 3,1,1 , 

ARIMA    
12

1,1,1 4,1,1  and    
12

1,1,1 12,1,12  and the 

best model was chosen based on the forecast measurement 

criteria. Table 1 displays the model summary. 

Table 1. Model summary 

Model Type MSE MAPE MAE 

   
12

1,1,1 1,1,1  Near singular Matrix 

   
12

1,1,1 2,1,1  32.2169 466.034 673.8563 

   
12

1,1,1 3,1,1  26.7684 322.033 463.294 

   
12

1,1,1 4,1,1  26.4604 314.9972 452.9685 

   
12

1,1,1 12,1,12  17.604* 185.141* 253.74** 

The forecast evaluation was based on the dynamic 

forecasting with the implementation of back casting MA 

(terms). 

The asterisk indicates that based on the smallest value 

of measurement criteria, seasonal ARIMA 

   
12

1,1,1 12,1,12 is the best model. 

The proposed model is: 

1 12 13

1 12 13

0.004842 0.2245 0.5017 0.1126

0.98 0.155 0.1519 ......... (16)

t t t

t t t t

y y y

eq   

  

  

  

   
C

heck appendix for the derivation of the above equation.  
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Figure 5. displays the model estimation of seasonal ARIMA 

   
12

1,1,1 12,1,12 model 

From the estimated model in Figure 5, we introduced 

constant in the model since we had first difference, 

seasonal difference in filtering the trend and controlling 

the seasonal patterns respectively. The constant doesn’t 

have much significant information on explaining the 

dependent variable (Naira/US Dollar exchange rate). On 

the validity of the coefficient of parameters, all the 

coefficients are valid (less than one) and they are all 

significant since their corresponding p – values is less than 

0.05, 0.01 level of significance, which conforms to Box 

Jenkins (1976) i.e. the parameters satisfy the Stationarity 

and invertibility conditions by falling in the unit circle, 

hence to some extent the naira/us dollar exchange rate is 

covariance stationary. The inverted AR and MA roots 

which were obtained from Eq (3) and Eq (4) (lag 

polynomials) is less than one, hence these justify that the 

too much of over difference was not examined, the 

coefficient of AR, MA can be interpreted and can be used 

for forecasting of the dependent variable (naira/us dollar) 

and these result conforms to Hamilton (1994). The AR (1) 

and SAR (12) introduced indicates that we can predict the 

current naira/dollar rate of any month using its past month. 

The MA (1) and SMA (12) in the estimated model reflect 

to smoothing and estimating the seasonal patterns. A small 

value in MA (1) coefficient suggest that little smoothing is 

being needed to estimate the local level and trend or few 

months of data is needed to estimate the local level and 

trend. From the estimated model MA (1) is -0.98, the 

value is so small in such that little or fewer months of data 

are used in estimating the local level and trend. The 

coefficient of SMA (12) is 0.155 which is also small, this 

means that little or small seasons of data are being 

averaged over to estimate the seasonal pattern. To judge 

for the appropriateness of this model we compare the 

value of R
2
 and the Durbin Watson statistics. As we can 

see the R
2
 = 0.60949 is less than Durbin statistics = 

1.919996, hence the model is appropriate and which 

conforms to Granger and New bold (1986). For the overall 

parameter significance, as we can see that Prob (F – 

statistics) = 0.00000 is less than the exact or observed 

probability (0.05) which indicates that we reject the 

association of no relationship of parameters to the 

Naira/Dollar exchange rate and conclude that lagged of 

the dependent (Naira/Dollar rate), error lagged values are 

used in forecasting the current (naira/dollar exchange. 

Since our model is adequate, we move ahead to perform 

the residual analysis (diagnostic checking). Figure 6 

displays the LM test for serial correlations in the residual 

obtain in the estimated model of equation (16). 

 

Figure 6. Breusch-Godfrey Serial Correlation LM Test: 

It can be seen that serial correlation is not present 

among the errors since the probability of having a large 

value of F – statistic = 1.5698 is greater than the observed 

probabilities (0.01, 0.05), hence we conclude that the 

seasonal ARIMA    
12

1,1,1 12,1,12 is adequate and be 

simply be efficient in carrying out prediction and 

forecasting. We forecasted for in and out sample forecast 

using both dynamic and static forecasting procedure. 

Dynamic forecasting as the usage of calculating dynamic, 

and multiple step ahead of forecasting using the first 

period in the forecast sample but depends on the dynamic 

components; lagged dependent variable and ARMA terms. 

Static forecasting has the ability to forecast for sequence 

of one step- ahead forecast using the actual rather than the 

forecasted values of the dependent variable. Since we 

have these, Figure 7 and Figure 8 displays the graph of the 

In and Out sample forecast at level form of the dependent 

variable (Naira/ US Dollar exchange rate) using dynamic 

and static forecast respectively. 
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Figure 7. Dynamic Forecast of Naira/Dollar Exchange Rate 
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Figure 8. Static Forecast of Naira/Dollar Exchange Rate 

The Thiel’s inequality coefficient (0.557934) indicates 

that the dynamic forecasting method do not show a greater 

forecasting accuracy since its value is largely different 

from zero. 

Theil inequality coefficient value close to 0 indicates a 

forecasting accuracy, hence as in Figure 8, the Thiel’s 

inequality coefficient (0.015674) indicates that the static 

forecasting method shows a greater forecasting accuracy 

since its value is not largely different from zero. In 

summary of the forecast values obtained from static 

forecast, Figure 9 displays the comparison between the 

actual, forecasted and the residual starting from 2012:01 

to 2013:08. 

 

Figure 9. Comparison between the actual, forecast values from 2012:01 

to 2013:08 

From figure 9, it appears that the seasonal ARIMA 

   
12

1,1,1 12,1,12 have predictive power, more efficient 

and hence the best model to describe the structure 

behaviour of the series (Naira/dollar exchange rate) which 

aid in control of stock and foreign exchange market 

movement. We checked oanda website which deals with 

world exchange rate data on all updated economic 

indicators for August 2013 average naira/dollar rate and it 

was found out that the average naira/dollar exchange rate 

for August 2013 was 159.5659 and our forecasted value 

obtained from our proposed model was 159.8603 which is 

indicated by the asterisk. The good result we obtained as 

justify the major aim of this research and hence we 

conclude that the seasonal ARIMA model proposed is 

good and accurate model for forecasting economic and 

time series data that exhibit seasonal behaviour. 

4 .Conclusion 

The main aim of this research is to justify whether the 

seasonal ARIMA model has a predictive power or 

forecasting ability to predict economic time series data 

which exhibit seasonal variation or behaviour. The aim is 

subjected to the methodology of the good work of Box 

and Jenkins (1976). The time plot, which is the first step 

to examining some hidden characteristics reveals non-

stationarity (and upward trend) and seasonal patterns. To 

control the seasonal patterns and trend, a 12
th

 seasonal 

difference and a first difference method were applied 

respectively and a partial autocorrelation function, the 

autocorrelation function partly implies the addition of 

AR(1), MA(1), SAR(1) and SMA(1) which all together 

built a seasonal ARIMA    
12

1,1,1 12,1,12 . The 

coefficient of MA (1), and SMA (1) of the estimated 

model proposed shows that few or little month of data are 

been used to estimate the local level and trend, and also 

few or fewer months of season of data are being average 

over to estimate the seasonal patterns. The proposed 

seasonal model showed flexibility, predictive accuracy 

and power based on the residual analysis which shows 

normality in data and presence of no serial correlation. 

The estimated forecasted values from our proposed model 

are much more realistic and closely reflect current 

economic reality in the two countries as indicated by the 

forecast measurement criteria.  

This research therefore recommends that a seasonal 

ARIMA model of this type is exploited by decision and 

policy makers, forecasters and researchers who make use 

of economic time series data which exhibits seasonal 

behaviour. Data exploration should also be properly 

scrutinized before carrying out time series data analysis 

because it endeavours to reveal the hidden characteristics 

of the series. 
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APPENDIX 

 

 

   

 

C 0.004842, AR 1 0.2245,

SAR 12 0.5017, MA 1 0.98,

SMA 12  0.155.

 



   

     

 

 

The general equation is: 

 0.0048 ...t tz y   (17) 

      12 121 1 1 1 .t tL L y L L          (18) 

Opening the brackets, we have 

 
 

 

12 13

12 13

1

1

t

t

L L L y

L L L

  

   

  

   
 (19) 

Opening the brackets: 

 
 

 

12 13

12 13

t t t t

t t t t

y L y Ly L y

L L L

  

      

  

   
 (20) 

Using the backshift operator to covert the lag 

polynomials. 

Recall that s,    and Ls
t t s t t sL y y      

Then we have; 

 
12 1 13

12 1 13

t t t t

t t t t

y y y y  

   

  

  

  

   
 (21) 

Re –arranging: 

 
1 12 13

1 12 13

t t t t

t t t t

y y y y  

   

  

  

  

   
 (22) 

Making yt the subject of formula, we have: 

 
1 12 13 1

12 13

t t t t t

t t t

y y y y   

  

   

 

   

  
 (23) 

Now substituting the coefficient of the parameters: 

 
1 12 13

1 12 13

0.2245 0.5017 0.1126

0.98 0.155 0.1519

t t t t

t t t t

y y y y

   

  

  

  

   
 (24) 

The estimated model of Eq (17) is re –writing as: 

 

1 12

13 1 12

13

0.004842 0.2245 0.5017

0.1126 0.98 0.155

0.1519

t t t

t t t

t t

y y y

y  

 
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