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Abstract  Use of Murthy’s method in estimation of population parameters, such as population totals, population 
means, and population variances has been limited to surveys where survey data values are complete. This study 
applies weight adjustment technique to estimate a population total under simple random sampling without 
replacement. The asymptotic properties show that the estimated population total is sufficient for the true population 
total. The proposed estimator is obtained by symmetrizing Murthy’s estimator. 
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1. Introduction 
In sample surveys, modeling an optimal estimator that 

best estimates finite population total has been of interest to 
modern statisticians (Ouma et al., 2010). Estimation 
methods for some population parameters include, among 
others, ratio estimation, Horvitzand Thompson estimation, 
and Yates and Grundy estimation. From these studies, 
various estimators of population have been obtained. In 
this paper, we have obtained a new estimator by 
symmetrizing Murthy’s estimator. We have then estimated 
finite population total in the presence of missing data 
using the derived estimator. As a way of correcting the 
‘missingness’ of data, weight adjustment method has been 
used. 

1.1 Background of the Problem 
In sample surveys, completeness of observed datais one 

factor that influences inferences made on results of a study. 
Daroga and Chaudhary (2002) explained that missing data 
distort validity and reliability of a study. Consequently, 
variousmethods of correcting missing data have been 
proposed in sample surveys. Some of the methods include: 
imputation techniques,partial deletion andresampling 
(Brewer, 2002, Broemeling,2009). Singh and Solanki 
(2012) later not only supported Broemeling’sproposal 
(2009), but also observed that previous studies have not 
extensively used samples with missing data. This research 
has, therefore, filled this gap by using a sample with 
missing values. Singh and Solanki (2012) further observed 
that previous studies have only focused on ordered 
sampling procedures. However, not all sets of data are 

ordered. In filling this gap, this study utilizes Murthy’s 
estimation method, which involves unordered sampling 
procedures (Murthy, 1957). 

2. Murthy’s Estimation 
Murthy's estimator has been used for constructing 

unbiased estimators of population totals and/or mean from 
a sample of fixed size. Let M̂Y  be an estimator of 
population parameter θ  based on the ordered sample (si), 
Murthy’s estimator for population total is given by 
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Where, 
P(s/i) = conditional probability of getting the set of units 
that was drawn, given that the i-th unit was drawn first. 
P(s) = unconditional probability of getting the set of units 
that was drawn  
Consider a random selection of three population units i, j, 
and k are randomly selected from a population of size N 
with the corresponding selection probabilities be zi, zj/(1-
zi), and zk/(1-zi-zj). 

Then we can show that Murthy’s estimator, M̂Y  is 
unbiased for the population total Y and its variance for n = 
2 is given by  
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Which can be rearranged as follows 
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3. Proposed Estimator 
The proposed estimator is given by 
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Where ciw =  weight adjustment of ith unit in group c and 

ciw  an be expressed as 

,c
ci

c

N
w

m
=  where cN  = population size in group c, cm  = 

number of units with complete data 

3.1. Derivation of the Proposed Estimator 
By assuming any two population units iy  and jy  and 

the corresponding selection probabilities ip  and ,ip  
Shahbaz (2004) modified Murthy’s estimator as 
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And Shahbaz and Ayesha (2008) symmetrized the 
partitioned estimator as 1T  and 2T  given by 
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Suppose the symmetrization is such that 
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Equation (1) is only for selecting 2 units. Suppose we 
consider n units, we get *T  given by 

 *
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Since the study involves estimating finite population 
total in the presence of missing data, we apply weighting 
adjustment to correct the “missingness” of responses. We 
proceed as follows; 

For any population of size N, as , 1in N p i→ → ∀ , 

then i jp p≈  and 1.n
N →  That is, for large n, the 

inclusion probabilities are asymptotically equal and 
1ip N→  (Cochran 1977) 

Using the results for large n and asymptotic value of ip , 
equation (2) reduces to 
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Equations (3) and the proposed estimator are similar if 
the weighting constant 1ciw =  and 1.c =  Our task is 
therefore to determine the value of .ciw  

Consider the set { }1,2,3, ..U N…  and { }1,2,3, ..S n= …  
be a set chosen from U.  

Define a population of size N as { }y iU y i U= ∈∕  and 

a sample of size n as { }y iS y i U= ∈∕ . 
Let the respective population and sample totals be 
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And the corresponding population and sample means 
are given by 

 p st t
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Since y  is unbiased for Y  it follows that N ( )Y E Ny=  
and hence the estimator of population is 
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3.2. Weighting Adjustment 
Suppose the population can be classified to form k 

groups based on auxiliary information ( 1,2, ).iX i N= ……  
Using the definition of S above, let us partition S as 
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Using the k classes, there exists partitions U1, 
U2, ……… , Uk such that c cS U⊂ , 1, 2, .c k∀ = …  

Let cΦ  be the set containing identified numbers of 
responding units in class c (i.e with no missing 
information). 

 Φ , 1,2, .c cS c k⇒ ⊂ = ……  

Let the sizes of Uc, Sc, and cΦ  are Nc, nc, and mc 
respectively, then by letting mc> 1, we have 
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Consider any class c (c = 1, 2, …..k), mc is used to 
represent nc. This implies that each of the mc units has a 

weight of .c
c

n
m  

Let ciy  be a study observation with an identification 
number i in class c. If we define 
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And from equation (4), ct  can be estimated by .c
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That is, 
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Equation (6) implies that a sample of size mc is used to 
represent a population of size Nc. The overall adjusted 
estimator can thus be written as 
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Where .c
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=  And ciw  can be expressed as ciw  = 

w1.w2, where w1 = c

c

N
n

 is the base weight in class c and 

w2 = c

c
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 is the non-response adjusted weight in class c. 

4. Properties of the Proposed Estimator 

4.1. Unbiasedness 

Define a vector ( )', ,c c cr m n N′ =  so that 

( )'
1 2 1 2 1 2, , , , , , 'k k KR m m m n n n N N N= … … …  

Now, 

 

( )

1

1 1
.

k
cw ci
cc i

k k

c c p
c c

NtE E y RR m

E t R t t

= ∈Φ

= =

    =   
    

= = =

∑∑

∑ ∑∕

 

Hence the estimator is unbiased. 

4.2. Variance of the Proposed Estimator 
Since the nature of sampling makes the entire sampling 

procedure analogous to Simple Random Sampling (SRS). 
Suppose we consider one of the classes and use a sample 
of size mc to estimate parameters in a population of size 
Nc, we can apply the procedures in SRS to derive this 
variance.  

Since y  is unbiased for Y  it follows that 

( ) ( ) 2 ( )c c cVar N Y Var N y N Var y= =  

Recall: ( ) ( ) ( )2 2 2 2[ ]Var y E y y E y y= − = −  

(Cochran, 1977) 
Now 
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which on simplification gives, 
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and this simplifies to, 
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But in SRS, sample variance ( 2
cs ) is unbiased for 

population variance ( 2
cS ). Where 
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Therefore, overall variance of the estimator is 
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4.3. Consistency of the Proposed Estimator 
Consider the proposed estimator wt  and finite 

population total pt . A sequence of point estimators 
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consistent for pt  if *
wt  converges in probability to .pt  

That is, 
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Proof: By Chebychev’s inequality, for every 0ε > . 

 { } ( ) 2 2
2 2

1

1 .
k

w c c
w p c c

c cc

Var t R N m
P t t N s

N m
ε

ε ε =

−
− > ≤ = ∑  

Taking limits as ,cm →∞  the right hand side 0→ . 

Hence, ,P
w pt t→  which is the necessary and 

sufficient condition for consistency. 

4.4. Bias of the Proposed Estimator 
From equation (8), we assume that Nc ( c∀ ) is known. 

Suppose that Nc is not known, we need to estimate Nc and 
consequently a new *.wt  Suppose the classification is 
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c

n
N  is equal to .n

N  

That is, sampling distribution of c
c

n
N  is centered on 

.n
N  

 .c ccc
n nnE N NN N n
 ⇒ = ⇒ = 
 

 (10) 

Replacing equation (10) in equation (7), we have 
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We can thus obtain Bias ( *
wt ) instead of Bias ( wt ) 
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constant. (Cochran, 1977) 
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But from previous workings,  
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From equations (6) and (7) 
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Substituting (14) and (15) in equation (13) and 
simplifying, we obtain 
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4.5. Expected Mean Squared Error (MSE) of 
the Proposed Estimator 
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