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Abstract  The paper focuses on the development of a strategy to integrate forecasting using artificial neural 
networks (ANN), simulation and optimisation techniques for ambulance deployment to predefined locations with 
heterogeneous demand patterns under stochastic environments. The metropolitan city of Bulawayo was used as a 
case study with high variability in call inter-arrival rates, response times, service times, and proportions of severity 
of emergencies by geographical zones covered by sub-stations. These stochastic environments complicate the 
decision-making process at strategic, tactical and operational level, in pursuit to achieve high levels of equality, 
efficiency and effectiveness in resource allocation and utilisation. This paper proposes an integrated simulation 
optimisation methodology that integrates future demand and allows for simultaneous evaluation of operational 
performances of deployment plans using multiple performance indicators such as average response time, total 
duration of a call-in system, number of calls in response queue, average queuing time, throughput ratios and 
ambulance utilisation levels. Increasing the number of ambulances influences the average response time below a 
certain threshold. Beyond this threshold, no significant changes occur in the performance measures. As the fleet size 
is increased, the ambulance utilisation levels decreased, hence there is always need to balance resource allocation 
and capacity utilisation to avoid idleness of essential equipment and human resources. Numerical experiments 
conducted to align the response time to international standards resulted in reduction in number of ambulances 
required for optimal deployment. For medical resources such as ambulances, deploying more resources do not 
always translate to better performance, hence there is need to simultaneously consider multiple performance 
measures. Decision makers in EMS must seriously consider ways of reducing the response time as it has significant 
bearing in reducing the required number of ambulances, a critical but scarce resource. Efforts must be directed 
towards digitisation of switch boards in the call center, training of the paramedics and provision of relevant modern 
equipment to the response teams as it will go a long way in reducing the pre-trip delay time, chute time and 
ultimately the response time. Based on the scientific evidence, management could lobby for de-congestion and 
resurfacing of old and dilapidated roads in order to increase access and speed when responding to emergency calls. 
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1. Introduction 

Reference [1], in a review paper highlighted that there 
is growing need across the world for emergency medical 
services (EMS) to increase coordination in patient care 
and quality care at lower costs by continuously monitoring 
the systems overall performance and effectiveness of the 
different pre-hospital interventions. An EMS can be 
generalised as a system that provides pre-hospital care to a 
specified population or citizens in need for emergency 
medical service. The ability for an EMS to provide timely 

response is affected by the fleet size and locations of the 
ambulances. Even though there is no global standard 
response time (RT), rapid response is the main goal of 
most EMS systems [2]. To achieve such ambitious goals, 
there is need to focus on EMS aspects of strategic, tactical 
and operational problems affecting the ambulance service 
value chain [3]. According to [4] the rising costs of 
medical equipment, increasing call volumes, worsening 
traffic conditions in urban areas make emergency medical 
service control centres face increasing pressure to meet 
performance targets. Such endeavours have been 
hampered by the uneven distribution of the population in 
the city, distribution of health centres, medical response 
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vehicles, technical staff and the ambulance service stations 
resulting in failing to meet the performance measures such 
as the response time. [5] emphasized that in order to 
manage a comprehensive and reliable EMS system, 
relevant data should be forecasted, complex systems 
should be modelled, efficient solutions and accurate 
dispatching policies should be designed. It is this level of 
expected rigour that is going to be adopted by this 
research while maintaining a reasonable balance among 
the interacting components in addressing these challenges. 

Reference [6] purported that artificial neural networks 
are receiving a huge amount of interest in areas of 
applications such as forecasting, pattern recognition, 
classification and clustering. According to [7], short-term 
forecasting remains an integral component in public 
ambulance emergency preparedness. A neural network is 
defined as a non-linear statistical model represented by a 
network diagram and are good at modelling any complex 
function where the relationship between variables is unknown 
[8]. According to [9], an artificial neural network (ANN) 
can also be defined as an information processing system 
that has been developed for generalisation of mathematical 
models of human neural biology. [7] emphasised that 
these non-linear models overcome the limitation of linear 
models as they are able to capture the non-linear pattern of 
data, thus improving their prediction performance. [10] 
highlighted that ANN have been successfully applied and 
proven to be useful in time series modelling where the 
future values of a variable is determined using its past values. 

Over the years, the complexity in which EMS evolve 
has led to the development of different models relating to 
the interaction between location, relocation and dispatch 
decisions. These models have been broadly classified as 
single coverage models, multiple coverage models, 
probabilistic and stochastic models, Stochastic and robust 
location-allocation models, fuzzy models, and human 
outcome based models [11]. Single coverage models whose 
objective was to minimise the number of vehicles required 
whilst ensuring that all zones were covered, formed the 
backbone of EMS research. According to [11], multiple 
coverage models were focused on the stochastic or 
randomness of the calls for vehicles and their availability 
whilst increasing the chances or likelihood of a demand 
zone covered. Probabilistic and stochastic models often 
referred to as expected covering location models, relied on 
the calculation of expected values of variables that are 
often characterised by uncertainty in their occurrence. The 
stochastic and robust location-allocation models 
endeavoured to account for the randomness of the call 
arrivals. According to [11], unlike the other discussed 
demand coverage maximization models, location-
allocation inspired models aim to minimize costs under 
demand satisfaction constraints. [12] formulated an 
ambulance location-allocation model that they applied to a 
case of a city in China with a range of twenty to seventy 
stations. The model simultaneously minimized the 
ambulance operating and transportation costs and the 
demands not served on time. They incorporated chance-
constraints to deal with demand uncertainty and these 
constraints ensured with a given probability that the 
number of vehicles located in a demand zone can satisfy 
the number of concurrent demands emanating in the area 
assigned to it. [13] formulated a two-stage stochastic 

location-allocation model to design an EMS in Tunisia. 
The model was designed to simultaneously determine the 
location of ambulance stations, the number and type of 
ambulances to be deployed and the demand zones to be 
covered by each station. Despite the high level of 
formulation of stochastic and robust location-allocation 
models, they require vast computational turnaround time 
in solving them and this has reduced their attractiveness 
for adoption. According to [5], the paradigm of fuzzy 
models is mostly applicable to deal with the uncertainty in 
the number of emergency calls when the stochastic 
framework or the probabilistic paradigm cannot be used. 
The fuzzy paradigm allows the use of qualitative data as 
well as expert-based knowledge by characterising them as 
linguistic terms. With the advent of human outcome-based 
paradigm, has seen the emergence of the maximal survival 
and equity models that are inclined to integrating patient 
outcomes into the decision-making process by EMS 
organizations. Reference [14] proposed the maximal 
survival location problem (MSLP) considering patient 
outcomes. The model considers the probability of survival 
of a patient by including it in the objective function that 
attempts to maximize the expected number of lives. When 
the model was applied to a case of Edmonton in Canada, 
the results indicated a significant increase in the number 
of survivors. Reference [11] argues that despite benefits 
through the consideration of patient survivability in location 
models, response time thresholds and coverage are still the 
important metrics in evaluating EMS performance.  

Reference [5] indicated that equity is one of the most 
challenges in the health-care sector and specifically EMS 
as it evaluates the fairness of how resources are distributed 
to patients in heterogenous societies. Such disparities exist 
between urban and rural areas or between high density 
suburbs and low-density suburbs. If issues around equity 
are not addressed in such scenarios, it would imply that 
lives are valued differently in different areas. In general 
practice, EMS providers are deemed to be providing 
equitable services if they favour disadvantaged groups. 
Reference [11] argues that equity is a complex 
phenomenon in the study of EMS and can be more 
meaningful when it considers the standing perspective of 
the key stakeholders; patients’ perspective and the service 
providers perspective. The patient is mainly concerned 
about fairness in the context of patients outcomes and 
patients waiting time whilst stakeholder perspective is 
mainly focused on issues around fairness in the 
distribution of workload which directly affects the 
retention of skilled personnel and the levels of attraction 
of new employees to the organization. Reference [5], 
classified the existing literature based on two key concepts: 
equity and uncertainty. However, the researcher observed 
that despite the difference in approach, there is 
convergence of ideas in the discussions by different 
authors with regards to the study of EMS systems. 
Reference [15] asserted that even though the hypercube 
model remains a powerful modelling approach, it requires 
several assumptions with regards to the way ambulances 
are dispatched whilst posing a great threat in convincing 
decision makers to adopt its predictions due to model 
complexities. This is a common feature for most models 
that have been discussed so far. Reference [4] highlighted 
that even though minimal covering models, maximum 
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covering models and double standard models have been 
developed based on either integer programming or 
dynamic programming formulation methodologies, 
finding their solutions is time consuming as they need to 
solve an optimisation sub-model every time a decision has 
to be made. It is from this stand point that the research 
team adopted a simulation optimisation method that 
enabled the evaluation of operational performances of 
deployment plans using a detailed simulation model. 

Simulation modelling is the process of designing a 
model of a real system and conducting experiments with 
this model for the purposes of understanding the behaviour of 
the system and or evaluating various strategies for the 
operation of the system. According to [16], the pressure 
for better services, low availability of resources and need 
to assess the impact of changes before actual implementation 
has created huge opportunities of increasing modelling 
and simulation in healthcare. Thus, simulation modelling 
is an attractive alternative as it allows an analysis of 
different scenarios before the actual implementation. 

There has been a wide range of research on emergency 
medical services using simulation modelling as a solution 
method of preference. In other cases, there has been a 
deliberate attempt to integrate different operations 
research techniques in order to improve the robustness of 
the results and analysis of the developed models. 
Reference [17] integrated simulation and optimisation 
techniques to analyse and evaluate the emergency medical 
system of the city of Belo Horizonte in Brazil. In their 
research, they focused on two critical aspects of service: 
how the system responded to an increased demand and the 
re-sizing of the ambulance fleet in order to significantly 
reduce the response time. Simulation in this case allowed 
different scenarios to be assessed without interfering with 
the actual EMS system. Whereas the use of optimisation 
for simulation improved the search for optimal settings of 
the system. More recently, [18] designed a generic method 
to develop simulation models for ambulance systems 
which integrated simulation and optimisation techniques. 
The model was validated using a case study of Belo 
Horizonte in Brazil and the UK system. [19] carried out a 
simulation study to improve the performance of the EMS 
of the French Val-de-Marne department. They focused on 
five strategies namely: varying the number and workload 
of resources, improving the EMS team deployment, 
regionalising the response, multi-period redeployment and 
process improvement. In all these strategies, they 
employed the discrete event simulation (DES) model in 
assessing different scenarios whilst using coverage and the 
utilisation rate as the performance measurements. [19] 
managed to demonstrate on how the simulation 
optimisation can be incorporated in the DES model in 
order to handle the large number of possible redeployment 
plans. Results of this strategy indicated that the multi-
period redeployment solution provided improved coverage 
and utilisation rates. Coverage here is considered as the 
percentage of calls for which the response time does not 
exceed a specific target time. An example could be 80% 
of calls less or equal to 20 minutes of response time. The 
human resources utilisation rate was defined as the total 
workload divided by the total operating time. 

Several researchers have made similar attempts in 
conducting numerical experiments to specific areas across 

the world involving emergency medical services. [20] 
focused on the allocation of ambulance vehicles to a set of 
existing or planned ambulance stations with known 
locations and alluded that the action to reduce response 
time due to pre-trip and queuing delays are far more easier 
and less costly to reduce than travel times. Pre-trip delays 
emanate from call delay or chute delay. A call delay is the 
time spent on taking a call, establishing the severity of the 
call and dispatching an ambulance crew. Chute delay is 
the time that elapses from when a crew is dispatched until 
the vehicle starts moving. Queuing delays occur when no 
ambulances are available either busy attending to other 
calls. The study indicated that reducing the travel times 
usually requires adding ambulance stations or hospitals 
which is costly as the municipality is currently financially 
under-resourced. They argued that reducing the response 
time by 20 seconds, is actually 20 seconds saved and it 
does not matter which component of response time these 
savings come from. The expectation is that reducing the 
response time has a huge bearing in improving service 
delivery, survival rates and patient satisfaction. [3] presented 
an almost similar research of an EMS problem which 
focused on ambulance station location and allocation 
problem which they referred to as the Maximum Expected 
Location Problem for Heterogeneous Regions (MEPLP-
HR). Its main objective was to give the population of Sor-
Trondelag County in Norway the best possible EMS 
according to a set of selected performance measures. They 
were able to demonstrate that as the response time 
decreases, there is corresponding increase in the probability 
of survival of a patient. They further demonstrated that as 
the service rate (calls/hour) increases, the probability of no 
available ambulance decreases. They were also able to 
demonstrate that as the arrival rate increases, the 
probability of no available ambulances increases as it 
translates to increase in demand for EMS provision. 

Reference [4] applied the simulation optimisation 
framework for ambulance deployment and relocation to 
the city of Shanghai in China. In their case, they also 
carried out some numerical experiments to determine the 
influence of parameters on the response time and the 
ambulance deployment plan. They were able to observe 
that the number of ambulances, the number of ambulance 
bases, and the number of hospitals had an impact on the 
average response time. An important contribution of this 
paper is to demonstrate on how to integrate forecasting, 
simulation and optimisation techniques for ambulance 
deployment in a heterogeneous region under multiple 
performance measures. We conduct simulation modelling 
and experiments in which multiple performance measures 
(average response time, total duration of a call in system, 
number of calls in response queue, average queuing time, 
throughput ratios and ambulance utilisation levels) and 
different objectives (minimising average response time, 
minimising average queuing time and maximizing 
throughput ratios) are simultaneously conducted. 

2. Materials and methods 

In this section, sources of data, univariate time series 
analysis model using artificial network, simulation and 
optimisation techniques are discussed in detail. 
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Figure 1. An Integrated Strategy for Ambulance Deployment 

2.1. Model Input Data 
Historical data of public emergency ambulance demand 

for the Bulawayo Emergency Medical Services (BEMS) 
January 2010 to December 2018, were retrieved from the 
archives for purpose of developing forecasting and 
simulation models. The flowchart of the methodology is 
presented in Figure 1. 

2.2. Feed-Forward Neural Networks 
The title should be formatted in an hourglass style; the 

first line longer than the second, the second line shorter 
than the third. Use numerical superscript callouts as 
shown in this template to link authors with their 
affiliations. Corresponding author should be denoted with 
an asterisk as shown. Email address is compulsory for the 
corresponding author. 

The feed-forward neural network (FFNN) architecture 
was trained by the neuralnet function of the R- package, 
which is a network training function that updates weights 
and bias values during training. The network is called feed 
forward because information flows only from the input 
layer to the output layer without recurrent or backward 
connections. Each layer consists of neurons and there is no 
connection between neurons that are in the same layer. 

The data splitting approach was adopted in order to 
develop and validate the feed-forward neural network. 
Data from January 2010 to December 2017 was used for 
model building and the data for the year 2018 was used 
for model cross-validation. This translates to 96 
observations for model building and 12 observations for 
model cross-validation. 

Data was scaled done using the minimum-maximum criteria 
to an interval (0,1) to prevent saturation in the hidden nodes 
and to assist t in the optimisation of the convergence rate 
during training of the neural network. Data was is to be 
split into training and testing sets of seventy-two (72) and 
twenty-four (24) observations respectively. This translates 
to 75% for training set and 25% for training set. The 
selection of the number of inputs in the model was based 
on trial and error as proposed by [10]. The general 
architecture of the FFNN can be generalised by equation 1. 

 ( )1 2 3 nI H ,H ,H ,...,H O− −  (1) 

where I represent the number of input nodes, Hn number 
of neurons in hidden layer n, and O the number of neurons 
in the output layer. An example is an ANN with seven (4) 
input nodes, one hidden layer with three (2) neurons and 
one (1) output neuron can be represented as 4-(2)-1 
respectively. A three layer 4-(2)-1 FFNN architecture is 
shown in Figure 2. 
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Figure 2. An Integrated Strategy for Ambulance Deployment 

The input vector is represented by Yj denoted by  
Yj = {y1 , y2 , y3 , y4 }; Wjk (j = 1, 2, 3, 4; k = 1, 2) is the 
connection weight vector of the j nodes of the input layer 
to the k nodes of the hidden layer; Xk (k = 1, 2) is the 
vector of k neurons in the hidden layer; Wk (k = 1, 2) is 
the connection weights of the k nodes of the hidden layer 
to the output layer; and Y is the unit output vector for the 
neural network with one output neuron. Θk (k = 1, 2) is the 
bias value of the hidden layer nodes and Θ is the bias 
value of the output layer. 

Supervised training with resilient backpropagation was 
adopted with 2017 demand calls as target values in the 
training algorithm. Training rate factors of 0.5 and 1.2 
were implemented as the minimum and maximum values 
respectively. The momentum was set to assume default 
values whilst a threshold value was set at o.01 for the 
training data. The logistic function was implemented as 
activation function in the hidden layer. A single output 
neuron with a linear activation function was assumed. 
Number of hidden layers and neurons were systematically 
varied to obtain accurate models and the best model is 
based on mean absolute error (MAE) and means square 
error (MSE) as performance measures. 

2.3. Simulation Modelling 
The Bulawayo Emergency Medical Services (BEMS) 

adopted the regionalised response strategy where EMS 
teams are assigned to serve a pre-specified area or region. 
In this strategy, it is assumed that if the assigned EMS 
team(s) is busy, the closest team must perform the mission. 
The main advantage of this strategy is to minimise travel 
times due to the reduced size of the geographic area that 
the EMS teams need to travel between call locations. The 
Bulawayo City, for the purposes of emergency response is 
demarcated into two broad regions, the eastern and 
western regions respectively. The eastern region covers 
basically the low-density suburbs characterised by low 
population densities as compared to the western region 
characterised by high population densities. Both the 
Eastern and Western regions are further split into two 
subregions to which an ambulance base station is assigned. 
Currently there are four base stations, two in each region 
namely: Famona and Northend (Eastern region), Nketa 
and Nkulumane (Western region). The study will consider 
the geographical distribution of emergency calls in 
reference to the four stations: Famona, Northend, Nketa 
and Nkulumane. The study will determine the inter-arrival 

rates distributions for each station using the historical data 
in ARENA.  

2.3.1. Call features, Types of Emergency and 
Ambulance Requirements 

The BEMS is currently operating using the Anglo-
American response strategy where the EMS is separated 
from the medical system as it offers only paramedic care. 
The BEMS uses different kinds of vehicles but fitted with 
the same equipment features to respond to emergency 
calls. Ambulance dispatch, which is the act of choosing an 
appropriate EMS vehicle to respond based on the nature 
and location of call guided by set standard rules and 
guidelines is performed by a dispatcher upon receiving 
calls requiring EMS. Currently, BEMS is inclined to call-
initiated dispatch decision making strategy where the 
dispatcher is mandated to select one of the idle ambulance 
vehicles to be dispatched after the arrival of an emergency 
call. BEMS employs the first come first serve (FIFO) 
dispatch strategy with priority given to road traffic 
accidents in the case where waiting calls are in the 
response system. The BEMS assumed a multi-location 
dispatch model, where the ambulances may be dispatched 
from wherever they are. When responding to calls, EMS 
crews are not given specific routes to follow as in the case 
of dynamic dispatch systems. Cases where an ambulance 
call is cancelled, it is recorded and normally such cases 
occur when there is a duplication of calls or the use of 
other emergency ambulance service providers by the 
caller. When responding, EMS medical crews can 
encounter: false and malicious calls (FAM), false alarm 
with good intent (FAGI) and true existence of a call. The 
EMS crew is expected to provide service at the scene, 
deliver a patient to a medical institution, perform hand-
over and take over procedure at medical centre, restocking 
and fuelling of vehicle. 

The types of emergencies were broadly categorised in 
three (3) distinct categories with assigned unique codes for 
tracking, rescue team deployment and reporting purposes. 
These are summarised in Table 1. For simulation 
modelling purposes, the model will adopt the codes Cat A, 
Cat B and Cat C for distinguishing the different 
emergency response categories. 

Table 1. Emergency Response Categories and Codes 

Code Description Simulation Code 
RTA Road traffic accidents CAT A: Urgent & life 

threatening 1A Accident / Emergencies 
1B Maternity clinics Cat B: Urgent but not life-

threatening symptoms 2 Clinics from home 
3 Removals / transfers Cat C: Non-urgent calls 
 
The study will assume a static ambulance deployment 

model which seeks to allocate a fixed number of 
ambulances to a set of known fixed base stations with the 
objective of ensuring that the best medical outcomes for 
patients are achieved. This will assist in decision making 
in determining the capacity and staffing of ambulance 
stations by optimising the number of ambulances needed 
to provide an efficient and effective service level for the 
set of existing ambulance stations with known locations. 
A logical presentation of the BEMS multi-location 
dispatch model is presented in Figure 3. 
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Figure 3. BEMS Multi-location Dispatch Model 

Part A of the dispatch model represents call generation 
process whilst Part B represents the dispatch process. Part 
C represents cancelled calls which emanate from calls that 
do not require an ambulance response or occurs when the 
caller sort for another service provider or there has been a 
duplication of a call. Part D represents a case were service 
on the scene is not required. Normally these are calls 
recorded as false and malicious alarm (FAM) or false 
alarm good intention (FAGI). Part E represents a case 
were service on the scene is required and patient is 
transferred to the hospital. Part F represents the material 
replenishment process where a decision is made whether 
to replenish the medical resources or not. It also includes 
aspects of vehicle service or refuelling. 

2.3.2. Data Manipulation and Analysis 
The simulation model to be developed will incorporate 

the randomness in call arrivals, travel times and service 
time. The model will assume that: (1) The arrival rate of 
calls may vary and is time dependent, (2) Calls are related 
with socio-economic conditions of the population, (3) 
Calls are serviced as per first come first serve (FIFO), (4) 
An ambulance could only serve one call at a time, (5) 
Ambulances have the same capacity in terms of size and 
equipment and that each ambulance team is made up of 
the driver and an attendant, (6) Ambulances are to be 

allocated randomly, (7) Response time is the time between 
the receipt of a call and to when the ambulance team 
arrive at the scene, (8) Service time is the time between 
the arrival of the ambulance team at the scene until they 
have performed hand-over take-over at the medical centre 
and vehicle is ready to depart for station and available to 
perform another task, and (9) Total duration in the system 
is the time from when a call is received up to when the 
ambulance is ready to depart for station ready to perform 
another task. 

2.3.3. Estimation of Statistical Distributions of 
Simulation Model Parameters 

The call inter-arrival time, response time, and service 
time distributions were generated in ARENA simulation 
package using the Input Analyser module on the 2018 
historical data. The service time distributions were 
separated for cases were service needs to be rendered on 
scene (SOS) and cases were service on scene is not 
required (NSOS). The NSOS emanate from FAG and 
FAGI and in such cases results in less time required by the 
responding crew team. However, these occur in different 
proportions in the heterogenous regions of service and 
were computed separately. The selection of the best 
distribution is based primarily on the square error (she) 
and test for goodness of fit, which was performed using 
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non-parametric tests (Chi-square and the Kolmogorov-
Smirnov tests), both embedded in the ARENA Input 
Analyser. 

2.3.4. Estimation of Proportions of Model Parameters 
The monthly and daily occurrences of demand per 

station will be computed from the forecasts data generated 
by the feed-forward neural network. Allocations to the 
different stations (Famona, Northend, Nketa and 
Nkulumane) will be based on proportions calculated from 
the historical data of 2018. The probability of occurrence 
of each medical condition or category (Cat A, Cat B and 
Cat C) shall be computed in Excel based on the 2018 
annual historical data. 

2.3.5. Simulation Model Development and 
Performance Measures 

The simulation model will be developed using  
ARENA simulation package. The performance measures 
considered for the simulation models are the average 
entity time in system, average response time, average 
response queue time, average number of calls in response 
queue, throughput ratios and capacity utilization levels of 
ambulances. Sensitivity and numerical experiments were 
conducted to achieve an in-depth analysis of the 
simulation models developed. Sensitivity analysis and 
numerical experiments entails changing model parameters 
and subsequently observing how these changes affect the 
general model performance and the deployment plan. The 
research will explore the following scenarios as part of 
simulation model development, sensitivity analysis and 
numerical experiments: (1) Optimum static ambulance 
deployment maintaining response time distributions 
(RTD), (2) Optimum static ambulance deployment to 
predicted ANN demand, maintaining the RTD and (3) 
Assess the influence of standardising the response time to 
international standards on the optimal ambulance 
deployment plan by adopting a uniform distribution given 
by U (10, 15).  

3. Results and Discussion 

Results on integrating forecasting, simulation and 
optimisation techniques for ambulance deployment are 
presented and discussed in this section. 

3.1. Neural Network Ambulance Demand 
Forecasts 

Several models of different architectures were 
systematically selected starting with two hidden units in a 
hidden layer and gradually increasing them. The models 
were predominantly divided into two distinct sets, one 
with a single hidden layer and the other with two hidden 
layers respectively. The mean square error (MSE) and 
mean absolute error (MAE) were used as the performance 
measures during training. Three models were selected and 
forecasts were generated for the year 2018 as a model 
cross-validation process. The RMSE and MAE were used 
as final performance measures for selecting a suitable 
model for the neural network and the results are 

summarized in Table 2. The architecture of the FFNN  
(7 − (4) − 1) with seven input nodes, one hidden layer  
(4 neurons) and one output neuron was the best model 
with the lowest MAE of 94.0 and RMSE of 137.19. 

Table 2. Feed Forward Neural Network Model Selection 

  Testing 
Set 

Testing 
Set Validation Validation 

Model Structure (MSE) (MAE) (RMSE) (MAE) 

1 7-(3)-1 268.14 5.29 165.28 114.54 

2 7-(3,2)-1 169.41 3.26 138.20 108.08 

3 7-(4)-1 402.18 6.26 137.19* 94.00* 

Note: * is minimum value of the performance measure across all models. 
 
The selected neural network model was used to forecast 

the public emergency ambulance demand for 2019 and 
results are summarised in Table 3 and Figure 4. Important 
quantitative measures such as weekly and daily forecasts 
can be derived from such forecasts and can be fully 
utilized for strategic planning purposes. Demand is 
expected to be high in January, March, September and 
December whilst lower demand is projected for April, 
June and July 2019. 

Table 3. Monthly, weekly and daily projected number of calls for 
2019 

Year 
(2019) 

Monthly 
Number of 

Calls 

Number of 
Days in a 

Month 

Weekly 
Demand 

Daily 
Demand 

January 1622 31 406 53 
February 1494 28 374 54 
March 1713 31 429 56 
April 1368 30 342 46 
May 1482 31 371 48 
June 1318 30 330 44 
July 1391 31 348 45 

August 1526 31 382 50 
September 1572 30 393 53 

October 1541 31 386 50 
November 1532 30 383 52 
December 1638 31 410 53 

 
Figure 4. Projected monthly, weekly and daily ambulance demand calls 
for 2019 
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Table 4. Simulation Model Distributions of The Sub-stations 

Famona 

Inter-arrival time 
0.999+WEIB (180;1.17) 

Response Time 
2+GAMM(22;1.48) 

Service on scene delay 
-0.001+164*BETA(2.7;6.47) 

No-service on scene 
-0.5+72*BETA(0.606;1.2) 

Northend 

Inter-arrival time 
3+GAMM(143;1.33) 

Response Time 
2+GAMM(23.9;1.36) 

Service on scene delay 
N(51.6;23.7) 

No-service on scene 
-0.001+WEIB(25.9;0.834) 

Nketa 

Inter-arrival time Response Time 
-0.001+WEIB(64;1.06) -0.001+ERLA(18.5;2) 
Service on scene delay No-service on scene 
2+201*BETA(3.81;10.9) -0.001+EXPO(23.6) 

Nkulumane 

Inter-arrival time Response Time 
0.999+GAMM(93.6;1.73) 0.999+GAMM(21.8;1.62) 
Service on scene delay No-service on scene 
N(53;19.8) -0.5+63*BETA(0.484;0.79) 

 
3.2. Estimation of Simulation Model Input 

Parameters 
Call inter-arrival time, response time, service on scene 

delay time (SOS) and no-service on scene required delay 
time (NSOS) distributions were generated in ARENA 
simulation package using the 2018 historical data. A 
summary of the results is presented in Table 4. 

It was also necessary to determine the proportion of 
emergency calls and non-emergency calls. The emergency 
calls are those that required the dispatch of an ambulance 
after being assessed by the dispatcher in the call centre. 
The non-emergency calls included cancelled calls and 
those that were attended to by other private emergency 
service providers. Global values of these parameters were 
calculated for all the four sub-stations and presented in 
Table 5. 

Table 5. Summary of Model Input Parameters 

Item Parameter Frequency Proportion % 
Proportion 

Call 
Filter 

Emergency 
Calls 16648 0.92 92% 

Non-emergency 
Calls 1435 0.08 8% 

 Total 18083 1.00 100% 
 
Calls required to be categorised as: Cat A, Cat B or  

Cat C, together with their corresponding probability of 
occurrences. As these vary from one sub-station to another 
due to the heterogeneous regions they render service, 
computations were done separately for each sub-station. 
The service on scene delay (SOS) and no service on scene 
delay (NSOS) proportions of occurrence were also 
computed and the statistics are summarised in Table 6. 
The no service required on scene (NSOS) emergencies 
emanate from the FAM and FAGI where the general 
service time is smaller as compared to cases where service 
on the scene (SOS) is required and rendered. Proportions 

of the SOS emergencies are seemingly higher in the 
western suburbs (Nketa and Nkulumane) as compared to 
the eastern suburbs (Famona and Northend). 

Table 6. Nature of Service and Call Category Classification 
Proportions by Sub-station 

Station SOS NSOS Total Cat A Cat B Cat C Total 
Famona 0.84 0.16 1.0 0.69 0.26 0.05 1.0 

Northend 0.84 0.16 1.0 0.58 0.38 0.08 1.0 
Nketa 0.93 0.07 1.0 0.56 0.37 0.07 1.0 

Nkulumane 0.94 0.06 1.0 0.62 0.36 0.02 1.0 
 
The number of false alarm malicious (FAM) and false 

alarm good intent (FAGI) calls are more prevalent in the 
eastern suburbs (Famona and Northend) as compared to 
their counterparts in the western suburbs (Nketa and 
Nkulumane). This might imply that eastern suburb 
residents find themselves with a wide range of alternatives 
for health emergencies resulting in more cases of FAGI 
cases. This however, justifies the need for equitable 
deployment of ambulance resources to meet the 
heterogeneous needs of the populace. 

3.3. Simulation Model Building for  
all Sub-stations 

In developing the simulation model, the number of 
ambulances were incremented from one (1) to the 
stipulated number of allocated ambulances to each sub-
station whilst changes in performance measures were 
being observed. The throughput ratio, represents the 
number of emergency ambulance calls that are served 
divided by the calls generated for the 24-hour day period 
and is expressed as a fraction. According to the official 
reports from the department of fire brigade, Famona was 
allocated one (1), Northend one (1), Nketa three (3) and 
Nkulumane one (1) ambulance(s) respectively. A 
summary of the simulation models is given in Table 7. 

Table 7. Simulation Model Performance Measures 

Description Abbrev. Famona Northend Nketa Nkulumane 
Ambulance Numbers NOA 1 1 1 2 3 1 
Average time in system (min) AVTIS 86.15 102.74 358.69 112.88 94.33 97.81 

Average response time (min) AVRT 40.51 58.7 306.04 64.92 49.02 43.21 
Aveg. No in response queue AVNRQ 0.04 0.19 4.95 0.42 0.05 0.02 
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Description Abbrev. Famona Northend Nketa Nkulumane 
Ambulance Numbers NOA 1 1 1 2 3 1 
Average queue time (min) AVQT 6.58 24.99 289.73 26.07 3.21 3.67 
Throughput ratio TPR 8/9 11/11 16/22 22/23 24/24 7/7 

Non-emergency calls NEC 0 0 0 0 0 0 
Amb. 1 utility  0.48 0.6 1.0 0.78 0.54 0.46 
Amb. 2 utility     0.66 0.45  

Amb. 3 utility      0.53  
Average utility ratio AUR 0.48 0.6 1.0 0.72 0.42 0.46 

 
The models developed are adequately mimicking the 

prevailing EMS process for Bulawayo city. Results from 
Nketa station which was allocated more than one 
ambulance indicate that as the number of ambulance size 
increases, there is corresponding improvement in the 
performance measures. The average time that an 
emergency call spends in the system decreases as the 
number of allocated ambulances increases. The response 
time, the number of calls in response queue and the 
corresponding average time in queue also decrease as the 
number of ambulance size increases. The throughput ratio, 
increases with increase in allocated ambulances. The 
ambulance utilisation levels decrease as the ambulance 
fleet size increases. The average response times are 
relatively high in comparison to recommended 
international standards of 10 to 15 minutes. Average 
queuing times and number of ambulances queuing are 
significantly high and undesirable in terms of service 
delivery as they have a negative bearing on human based 
outcomes of safety and satisfaction. Safety in terms of the 
chances of survival and satisfaction in terms of quality-of-
service delivery across the EMS response cycle. The 
general expectation is that no call should queue for service. 
Hence, there is need to determine the optimum ambulance 
deployment models that minimise the number of 
ambulances needed to provide a specific service level. The 
next section seeks to address the issue by adopting 

optimisation for simulation through the use of sensitivity 
analysis. 

3.4. Integrating ANN PEAD Forecasts in 
Ambulance Deployment 

The objective is to integrate the ANN public emergency 
ambulance demand (PEAD) forecasts and optimisation for 
simulation through the use of sensitivity analysis, in 
determining the optimal deployment plans by varying the 
fleet sizes while observing the multiple performance 
measures. 

3.4.1. Computation of Expected Daily PEAD from 
ANN Forecasts 

In order to apportion the predicted public emergency 
ambulance demand (PEAD) by ANN to the different sub-
stations, proportions of occurrence of demand calls at each 
station were computed using historical data of 2018. The 
proportions computed were as follows: Famona (18.1%), 
Northend (17.6%), Nketa (47.1%) and Nkulumane (17.2%) 
respectively. Theses proportions were then used to 
apportion the 2019 ANN forecasts as a build-up in the 
integration of forecasting and simulation concepts for 
future EMS preparedness. A summary of the expected 
monthly public ambulance demand calls per station are 
presented in Table 8. 

Table 8. Expected Monthly Demand Per Station 

Month ANN Forecast 
(2019) 

Famona 
(18.1%) 

Northend 
(17.6%) 

Nketa 
(47.1%) 

Nkulumane 
(17.2%) 

January 1622 294 285 764 279 
February 1494 270 263 704 257 

March 1713 310 301 807 295 
April 1368 248 241 644 235 
May 1482 268 261 698 255 

June 1318 239 232 620 227 
July 1391 252 245 655 239 

August 1526 276 269 719 262 
September 1572 285 277 740 270 

October 1541 279 271 726 265 

November 1532 277 269 722 264 
December 1638 296 289 771 282 

Total 18197 3294 3203 8570 3130 
 
The expected average daily calls per station were further computed and results are summarised in Table 9. These 

calculated expected daily calls will be incorporated in the determination of optimal number of ambulances to be allocated 
in each station every month of 2019. 

 

 



 American Journal of Applied Mathematics and Statistics 89 

Table 9. Expected Daily Ambulance Demand Per Day 

Month Days in the Month Famona Northend Nketa Nkulumane 
January 31 9 9 25 9 

February 28 10 9 25 9 
March 31 10 10 26 10 

April 30 8 8 21 8 
May 31 9 8 23 8 
June 30 8 8 21 8 

July 31 8 8 21 8 
August 31 9 9 23 8 

September 30 10 9 25 9 
October 31 9 9 23 9 
November 30 9 9 24 9 

December 31 10 9 25 9 
Overall average 9 9 24 9 

Maximum 10 10 25 10 
Minimum 8 8 21 8 

 
3.4.2. Optimum Deployment Plan Strategy for BEMS 

The ANN forecasts in Table 9 indicate that over the 
whole year of 2019, across the different 12 months would 
assume values of 8, 9 and 10 as expected daily number of 
calls for Famona, Northend and Nkulumane sub-stations. 
Nketa sub-station would assume values of 21, 23, 24, 25 
and 26. The ambulance fleet sizes were incremented from 
one (1) whilst monitoring the performance measures. 
Summaries of the processes in determining the optimum 
development plans by integrating forecasting, simulation 
and optimisation techniques are presented as: Famona - 
Table 10, Northend - Table 11, Nketa - Table 12 and 
Nkulumane - Table 13. 

It was observed that increasing the number of 
ambulances influences the average response time below a 
certain threshold. When fleet size is increased beyond this 
threshold, no significant changes occur in the performance 
measures. As the fleet size is increased, the ambulance 
utilisation levels decreased. Hence, there is need to 
balance resource allocation and capacity utilisation to 
avoid idleness of essential equipment and human 
resources. Under the prevailing conditions, there is a 
deficit of five (5) ambulances to maintain the optimal fleet 
size where queues and queuing time for an ambulance are 
reduced to zero. The Optimum ambulance deployment 
plan are summarised in Table 14. 

Table 10. Optimum Deployment Plan: Famona Station 

Calls (N) NOA AVTIS (min) AVRT (min) AVNRQ AVQT (min) TPR AUR (%) NSOS SOS 

 
8 

1 86.15 38.80 0.03 5.32 8/8 45 16.44 65.9 

2 76.06 33.07 0.0 0.0 8/8 21 15.62 64.37 
3 73.06 33.07 0.0 0.0 8/8 14 15.62 64.37 

 
9 

1 86.15 40.51 0.04 6.58 8/9 48 16.44 65.9 

2 73.06 32.29 0.0 0.0 8/9 23 15.62 64.37 
3 76.06 32.29 0.0 0.0 8/9 15 15.62 64.37 

 
10 

1 86.15 40.51 0.04 6.58 8/9 48 16.44 65.9 
2 73.06 32.29 0.0 0.0 8/9 24 15.62 64.37 
3 73.06 32.29 0.0 0.0 8/9 15 15.62 64.37 

Table 11. Optimum Deployment Plan: Northend Station 

Calls (N) NOA AVTIS (min) AVRT (min) AVNRQ AVQT (min) TPR AUR (%) NSOS SOS 

 
8 

1 93.87 47.63 0.09 17.91 7/7 37 31.82 52.0 
2 94.34 49.26 0.0 0.0 6/6 20 34.47 55.68 

3 94.34 49.26 0.0 0.0 6/6 13 34.47 55.68 

 
9 

1 93.79 46.67 0.09 15.67 8/8 43 31.82 52.22 
2 85.65 49.26 0.0 0.0 6/6 18 27.78 53.63 

3 85.65 49.26 0.0 0.0 6/6 13 27.78 53.63 

 
10 

1 103.01 54.85 0.14 22.61 9/9 50 31.82 52.84 

2 78.89 44.40 0.0 0.0 7/7 19 26.84 53.63 
3 78.89 44.40 0.0 0.0 7/7 13 26.84 53.63 
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Table 12. Optimum Deployment Plan: Nketa Station 

Calls (N) NOA AVTIS (min) AVRT (min) AVNRQ AVQT (min) TPR AUR (%) NSOS SOS 

21 

2 120.75 66.38 0.30 24.20 18/18 61 53.18 54.61 
3 101.16 51.82 0.05 4.05 19/19 43 0.0 49.34 
4 93.72 44.02 0.01 0.97 20/20 32 11.84 51.7 
5 92.21 41.75 0.0 0.0 20/20 26 11.84 52.49 
6 92.21 41.75 0.0 0.0 20/20 26 11.84 52.49 

23 

2 113.3 61.06 0.3 22.48 19/19 60 53.18 52.06 
3 102.59 53.74 0.05 3.66 21/21 48 0.0 48.84 
4 94.47 42.95 0.01 0.88 22/22 36 11.84 53.41 
5 89.23 39.71 0.0 0.0 22/22 27 11.84 51.32 
6 89.23 39.71 0.0 0.0 22/22 23 11.84 51.32 

24 

2 112.16 59 0.3 21.36 20/20 63 53.18 53.16 
3 98.97 51.62 0.05 3.5 22/22 48 23.42 49.75 
4 95.74 42.95 0.01 0.88 22/22 37 11.84 54.74 
5 89.73 40.7 0.0 0.0 23/23 29 19.56 53.45 
6 89.73 40.7 0.0 0.0 23/23 24 19.56 53.45 

25 

2 115.24 59.58 0.31 20.98 21/21 69 53.18 56.08 
3 96.87 49.79 0.05 3.35 23/23 50 23.42 49.33 
4 95.74 41.49 0.01 0.84 22/23 39 11.84 54.74 
5 88.97 41.07 0.0 0.0 24/24 30 20.14 53.45 
6 88.97 41.07 0.0 0.0 24/24 25 20.14 53.45 

26 

2 113.51 62.25 0.35 23.01 22/22 69 43.77 52.93 
3 94.33 49.02 0.05 3.21 24/24 51 17.09 49.33 
4 95.74 41.49 0.01 0.81 22/23 37 11.84 54.74 
5 87.43 40.68 0.0 0.0 25/25 30 15.78 52.65 
6 87.43 40.68 0.0 0.0 25/25 25 15.78 52.65 

Table 13. Optimum Deployment Plan: Nkulumane Station 

Calls (N) NOA AVTIS (min) AVRT (min) AVNRQ AVQT (min) TPR AUR (%) NSOS SOS 

8 
1 97.81 43.21 0.02 3.67 7/7 46 50.86 56.06 
2 83.04 43.95 0.0 0.0 6/7 20 34.5 53.54 
3 83.04 43.95 0.0 0.0 6/7 13 34.5 53.54 

9 
1 97.81 43.21 0.02 3.67 7/7 46 50.86 56.09 
2 83.04 43.95 0.0 0.0 6/7 20 34.5 53.54 
3 83.04 43.95 0.0 0.0 6/7 13 34.5 53.54 

10 
1 97.81 43.21 0.02 3.67 7/7 46 50.86 56.09 
2 83.04 43.95 0.0 0.0 6/7 20 34.5 53.54 
3 83.04 43.95 0.0 0.0 6/7 13 34.5 53.54 

Table 14. Computational Fleet Sizes on Expected Daily Calls (N) from ANN Forecasts 

Region Station 
Expected Daily Calls (N) 

N=8 N=9 N=10 N=21 N=23 N=24 N=25 N=26 

Eastern Suburbs 
Famona 2 2 2 - - - - - 

Northend 2 2 2 - - - - - 

Western Suburbs 
Nketa - - - 5 5 5 5 5 

Nkulumane 2 2 2 - - - - - 

Table 15. Optimal Fleet Size for ANN Expected Daily Ambulance Demand Forecast 

 Famona Northend Nketa Nkulumane Fleet Size 
January 2 2 5 2 11 

February 2 2 5 2 11 
March 2 2 5 2 11 
April 2 2 5 2 11 
May 2 2 5 2 11 
June 2 2 5 2 11 
July 2 2 5 2 11 

August 2 2 5 2 11 
September 2 2 5 2 11 

October 2 2 5 2 11 
November 2 2 5 2 11 
December 2 2 5 2 11 
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A summary of the annual deployment plan by 
integrating the annual ANN expected daily demand 
forecasts is presented in Table 15. The results imply that 
an optimum deployment plan of eleven (11) ambulances is 
adequate to meet future demand as predicted by ANN. 

3.5. Numerical Experiments 
Numerical experiments were conducted to determine 

optimal static ambulance deployment plan by varying the 
response time to international standards against the 
predicted ANN values. A uniform distribution U (10; 15) 
was adopted to represent the response time and would 
allow the response time to vary between 10 and 15 
minutes. Performance measures such as the average entity 
time in system, average response time, average response 
queue time, average number of calls in response queue 
and the ambulance utility levels were used to evaluate the 
models. The simulation model parameters such as the 
inter-arrival of calls and service time distributions were 
maintained. 

3.5.1. Comparison of Optimum Deployment Plans: 
Famona Station 

There was need therefore to compare the different 
performance changes due to the influence of the changes 
in response time distributions on the optimal deployment 
plan for Famona Station. A summary of statistics of the 
optimum deployments are presented in Table 16. 

The overall optimal deployment plan for Famona 
changes for all the expected daily forecasts (N=8, 9 and 10) 
from ANN. The optimum number of ambulances (NOA) 
decreases from two (2) to one (1) as the response time is 
set between 10 to 15 minutes using the uniform 
distribution U (10; 15) for all the cases. Therefore, 
reducing the response time impacts positively on the 
performance measures. The average response time 
decreases whilst the number of ambulances required to be 
deployed decreases without compromising service 
delivery. Notably, the average total time a call is reported 
to be in the system significantly decreases despite the fact 
that less ambulances would have been deployed across all 
the considered cases. Moreover, the average utilisation 
levels (AUR) of ambulances increased significantly with 

the reduced response time. Under these prevailing 
conditions, no emergency ambulance call is expected to 
queue for service. 

3.5.2. Comparison of Optimum Deployment Plans: 
Northend Station 

A comparison on the performance changes due to the 
influence of changes in response time distribution on 
optimal deployment plan for Northend Station was 
performed. Summary statistics are presented in Table 17. 

The overall optimal deployment plan for Northend 
Station did not change for expected daily forecasts (N=8, 
9 and 10) from ANN forecasts. The optimum number of 
ambulances (NOA) remains at two (2), however, 
significant decreases in the average response time (AVRT) 
and average total duration time of call-in system (AVTIS) 
were recorded respectively. In all the cases discussed no 
emergency call is expected to queue for service. The total 
number of ambulances to be served within a day as 
depicted by the throughput ratios (TPR) of (6/6, 7/7 and 
8/8) is expected to increase with reduced response time ∼ 
U (10; 15). 

3.5.3. Comparison of Optimum Deployment Plans: 
Nketa Station 

A comparison on the performance changes due to the 
influence of changes in response time distribution on 
optimal deployment plan for Nketa Station was performed. 
A summary of statistics is presented in Table 18 for all 
cases (N=21, 23, 24, 25 and 26) respectively. Results 
indicate that reducing the response time by adopting a 
uniform distribution U (10; 15) resulted in the decrease of 
the optimal number of ambulances required to achieve an 
optimal deployment plan. The adoption of U (10; 15) 
would result in a drop in the threshold fleet size from five 
(5) to three (3) ambulances for all cases (N=21, 23, 24, 25 
and 26). Utilisation capacity levels increased with reduced 
response time regardless of the decrease in ambulance 
fleet sizes for all cases. The throughput ratios remain 
relatively high despite the decrease in optimum fleet size 
where no emergency ambulance call is queuing for service. 
Hence, service provision is not compromised by the 
resulting influence of reducing response time and fleet 
size. 

Table 16. Comparison of Optimal Deployment Plans: Famona Station 

ANN Forecasts Response Time Distribution Opt. NOA AVTIS (min) AVRT (min) TPR AUR (%) NSOS (min) SOS (min) 
N=8 2+GAMM(22;1.48) 2 76.06 33.07 8/8 21 15.62 64.37 

 U(10;15) 1 52.92 12.92 8/8 29 15.62 64.37 
N=9 2+GAMM(22;1.48) 2 73.06 32.29 8/9 23 15.62 64.37 

 U(10;15) 1 52.92 12.92 8/9 29 15.62 64.37 
N=10 2+GAMM(22;1.48) 2 73.06 32.29 8/9 24 15.62 64.37 

 U(10;15) 1 52.92 12.92 8/10 29 15.62 64.37 

Table 17. Comparison of Optimum Deployment Plans: Northend Station 

ANN Forecasts Response Time Distribution Opt. NOA AVTIS (min) AVRT (min) TPR AUR (%) NSOS (min) SOS (min) 

N=8 
2+GAMM(23.9;1.36) 2 94.34 49.26 6/6 20 34.47 55.68 

U(10;15) 2 56.61 11.83 6/6 12 34.47 55.68 

N=9 
2+GAMM(23.9;1.36) 2 85.65 49.26 6/6 18 27.78 53.63 

U(10;15) 2 58.04 11.63 7/7 14 34.47 55.36 

N=10 
2+GAMM(23.9;1.36) 2 78.39 44.40 7/7 19 26.84 53.63 

U(10;15) 2 58.90 11.63 8/8 17 34.74 54.95 
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Table 18. Comparison of Optimal Deployment Plans 

ANN Forecasts Response Time Distribution Opt. NOA AVTIS (min) AVRT (min) TPR AUR (%) NSOS (min) SOS (min) 

N=21 
-0.001+ERLA(18.5;2) 5 92.21 41.75 20/20 26 11.84 52.49 

U(10;15) 3 65.49 12.77 19/19 29 28.41 57.34 

N=23 
-0.001+ERLA(18.5;2) 5 89.23 39.71 22/22 27 11.84 51.32 

U(10;15) 3 65.48 12.63 20/21 31 28.41 57.10 

N=24 
-0.001+ERLA(18.5;2) 5 89.73 40.7 23/23 29 19.56 53.45 

U(10;15) 3 64.29 12.57 21/22 32 28.41 55.53 

N=25 
-0.001+ERLA(18.5;2) 5 88.97 41.07 24/24 30 20.14 53.45 

U(10;15) 3 64.29 12.68 21/23 33 28.41 55.53 

N=26 
-0.001+ERLA(18.5;2) 5 87.43 40.68 25/25/ 30 15.78 52.65 

U(10;15) 3 64.29 12.68 21/23 33 28.41 55.53 
 

3.5.4. Comparison of Optimum Deployment Plans: 
Nkulumane Station 

A comparison on the performance changes due to the 
influence of changes in response time distribution on 
optimal deployment plan for Nkulumane Station was 
performed. Summary statistics are presented in Table 19 
for all cases (N=8, 9 and 10). For all the cases, the 
threshold of one (1) ambulance was achieved and any 
increase beyond this fleet size threshold would not 
positively influence changes in the performance measures. 
Ambulance utility levels (AUR) increased as the number 
of ambulances allocated decreased. Results indicate that 
reducing the response time between 10 and 15 minutes by 
adopting a U (10, 15) distribution resulted in decrease of 
the optimal number of ambulances required to achieve an 
optimal deployment plan, without having calls queuing for 
ambulance response services. 

3.5.5. Optimal Fleet Sizes for ANN Forecasts and  
RTD ∼ U (10; 15) 

A summary of the optimum deployment plan when 
integrating ANN forecast and the proposed response  
time distribution: RTD ∼ U (10; 15) is summarised  
in Table 20. Generally, the number of ambulances 
required are high in the Western suburbs as compared to 
the Eastern suburbs. 

To determine the annual allocation of the ambulances 
across the stations and months, reference is made to  
Table 9 which represents the expected ANN daily calls 
forecasts per station across the months of the year.  
The integration of the expected daily forecasts from  
ANN and the optimisation for simulation modelling 
process resulted in an optimal deployment plan presented 
in Table 21.  

Table 19. Comparison of Optimum Deployment Plans: Nkulumane Station 

ANNForecasts Response Time Distribution Opt.NOA AVTIS (min) AVRT (min) TPR AUR (%) NSOS (min) SOS (min) 

N=8 
0.999+GAMM(21.8;1.62) 2 83.04 43.95 6/7 20 34.5 53.54 

U(10;15) 1 57.64 12.71 7/7 28 34.5 52.76 

N=9 
0.999+GAMM(21.8;1.62) 2 83.04 43.95 6/7 20 34.5 52.76 

U(10;15) 1 57.64 12.71 7/7 28 34.5 52.76 

N=10 
0.999+GAMM(21.8;1.62) 2 83.04 43.95 6/7 20 34.5 52.76 

U(10;15) 1 57.64 12.71 7/7 28 34.5 52.76 

Table 20. Optimum Fleet Sizes on ANN Forecasts: RTD ∼ U (10; 15) 

Region Station 
Expected Daily Calls (N) 

N=8 N=9 N=10 N=21 N=23 N=24 N=25 N=26 

Eastern Suburbs 
Famona 1 1 2 - - - - - 

Northend 2 2 2 - - - - - 

Western Suburbs 
Nketa - - - 3 3 3 3 3 

Nkulumane 1 1 1 - - - - - 

Table 21. Annual Optimal Fleet Size for ANN Forecasts: RTD ∼ U (10; 15) 

 Famona Northend Nketa Nkulumane Fleet Size 
January 1 2 3 1 7 
February 2 2 3 1 8 
March 2 2 3 1 8 
April 1 2 3 1 7 
May 1 2 3 1 7 
June 1 2 3 1 7 
July 1 2 3 1 7 
August 1 2 3 1 7 
September 2 2 3 1 8 
October 1 2 3 1 7 
November 1 2 3 1 7 
December 2 2 3 1 8 
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Figure 5. A Comparison of Optimum Deployment Plans 

The deployment plan indicates that eight (8) 
ambulances are required in the months of February, March, 
September and December whilst seven (7) ambulances are 
required for the months of January, April, May, June, July, 
August, September, October and November. A 
comparison of the two ambulance deployment plans 
before and after adjusting for the response time 
distribution is shown in Figure 5. 

3.5.6. Implications of Numerical Experiments 
Standardising the response time between 10 to 15 

minutes by adopting a uniform distribution (U (10, 15)) 
had a positive influence on the optimal deployment plan. 
It resulted in significant decrease in the number of 
ambulances to be deployed. The decrease in ambulances 
deployed did not affect the overall performance of EMS 
provision as it resulted in decreases of average response 
time, average total duration of call in the system and 
reduced queuing time to zero. The ambulance utilisation 
levels and the throughput ratios remained relatively high. 
To management, it is imperative to seriously consider 
ways of reducing the response time as it has significant 
bearing in reducing the required number of ambulances, a 
critical and scarce resource in EMS. With reduced number 
of ambulances, brings about reduced requirement of 
human capital and reduced workloads as members would 
be able to be rotated more frequently as per international 
standards. One way is to focus on reducing the per-trip 
delays, chute delay time and the queuing time which is 
operationally possible. There is need therefore to manage 
closely activities within the call centre. 

4. Conclusion 

The paper developed a strategy of integrating 
forecasting, simulation and optimisation techniques for 
am- balance deployment in a heterogeneous region under 
multiple performance measures. An ANN model with a  
7-(4)-1 architecture was selected to forecast 2019 public 
emergency ambulance demand (PEAD). Peak PEAD is 
expected in January, March, September and December 
whilst lower demand is expected for April, June and July 
2019. Probabilistic and stochastic simulation model input 

parameters were developed using the 2018 data to capture 
the random or stochastic nature of the inter-arrival rates of 
calls, response time, service time, occurrences of 
emergency calls and their levels of severity due to the 
heterogeneous demand zones. The number of false alarm 
malicious (FAM) and false alarm good intent (FAGI) calls 
were prevalent in the eastern suburbs as compared to the 
western suburbs. Implications are that eastern suburb 
residents find themselves with a wide range of alternatives 
for health emergencies resulting in more cases of FAGI. 
This however, justifies the need for equitable deployment 
of ambulance resources to meet the heterogeneous needs 
of the populace by ensuring that ambulances are deployed 
where they are needed most. Simulation models developed 
mimicked the prevailing levels of service for BEMS with 
six (6) operational ambulances. The general simulation 
models developed indicated that average response times 
are well above 15 minutes, significantly high average 
queuing times and number of ambulances queuing for 
service. These performance outcomes are highly 
undesirable as they pose a great threat to human based 
outcomes of safety and sat- is faction with regards to 
service delivery. The general expectation is that no call 
should queue for service. Hence, there was need to 
determine the optimum ambulance deployment plans that 
minimises the response time whilst adjusting for the 
number of ambulances needed to provide a specific 
service level. Optimisation for simulation conducted by 
simultaneously minimising the average response time, 
average queuing time and maximizing throughput ratios. 
Increasing the number of ambulances influences the 
average response time below a certain threshold, beyond 
this threshold, the average response time stays at a certain 
level rather than decreasing gradually and no significant 
changes occur in other performance measures. Ambulance 
util- station inversely varied to increase in the fleet size. A 
total of eleven (11) ambulances are required to meet future 
demand. Under these prevailing conditions, there is a 
deficit of five (5) ambulances to maintain a balanced 
optimal fleet size where queues and queuing time for an 
ambulance are reduced to zero. However, the average 
response times remained high, above the recommended 
international standards. The influence of varying the 
response time distributions on the optimum deployment 
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plans to international standards of 10 to 15 minutes by 
adopting a uniform distribution given by U (10; 15) was 
explored using numerical experiments. The ANN public 
emergency ambulance demand (PEAD) forecasts were 
incorporated, whilst adjusting the ambulance fleet sizes in 
order to optimise the levels of preparedness. This was 
strongly motivated by the fact that it is easier, cheaper and 
feasible for management to control processes that are 
directly linked to the response time such as pre-trip delays, 
chute time and queuing time. The adoption of U (10; 15) 
resulted in a decrease in the total ambulance deployment 
from eleven (11) to eight (8) ambulances. This implies 
that reducing the response time results in the reduction in 
number of ambulances required for optimal ambulance 
deployment. It is also imperative to simultaneously 
consider multiple performance indicators to complement 
the average response time. This goes a long way in 
balancing resource allocation and capacity utilisation to 
avoid idleness of essential equipment and human 
resources. For medical resources such as ambulances, the 
more resources deployed does not always translate to 
better performance. Decision makers in EMS must 
seriously consider ways of reducing the response time as it 
has significant bearing in reducing the required number of 
ambulances, a critical but scarce resource. Efforts must be 
directed towards digitisation of switch boards in the call 
centre, training of the paramedics and provision of 
relevant modern equipment to the response teams. This 
also translates to reduced workloads on the response teams. 
Based on the scientific evidence, management could lobby 
for de-congestion and resurfacing of old and dilapidated 
roads in order to increase access and speed when 
responding to emergency calls. Training and provision of 
appropriate and modern equipment to the response teams 
will go a long way in reducing the pre-trip delay time, 
chute time and ultimately the response time. An important 
contribution of this paper was to develop and demonstrate 
a framework for integrating forecasting, simulation  
and optimisation techniques for ambulance deployment in 
a heterogeneous region under multiple performance 
measures. The methodology removed several simplifying 
assumptions that are necessary in other operations 
research models. 
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