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Abstract  The present paper reviews the process that led from Zadeh’s fuzziness to Smarandache’s neutrosophy 
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space and Hausdorff topological space can be naturally extended to neutrosophic topological spaces. 
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1. Introduction 

The existing in real life uncertainty is connected to the 
lack of knowledge and represents the total amount of 
potential information in a situation. This implies that a 
reduction of uncertainty due to a new evidence (e.g. 
receipt of a new message) indicates a gain of an equal 
amount of information.  

The uncertain problems need imprecise methods that 
could deal with different types of uncertainties to increase 
the understanding of the outcomes. Probability theory  
was proved efficient for managing the cases of uncertainty 
due to randomness [1]. Starting from the Zadeh’s fuzzy  
set (FS) [2] and fuzzy logic [3], however, several  
theories developed during the last 60 years for managing 
more effectively all the types of uncertainty;  
e.g. see [4]. 

FSs tackle successfully the uncertainty due to 
vagueness, which is created when one is unable to clearly 
differentiate between two classes, such as “a person of 
average height” and “a tall person”.  

Atanassov introduced in 1986 the concept of 
intuitionistic FS (IFS) [5] by adding to Zadeh’s 
membership degree the degree of non-membership of each 
element of the universal set. 

Smarandanche, motivated by the various neutral 
situations appearing in real life - like <friend, neutral, 
enemy>, <positive, zero, negative>, <small, medium, 
high>, <male, transgender, female>, <win, draw, defeat>, 
etc. - introduced in 1995 the concept of neutosophic set 

(NS) [6] by adding a third degree of indeterminacy 
between the degrees of membership and non-membership. 

The present paper aims at reviewing the process that led 
from fuzziness to neutrosophy and at discussing the future 
perspectives of the corresponding theories. The rest of the 
paper is formulated as follows: Section 2 contains basic 
definitions and examples of FS and IFS. Section 3 is 
devoted to NSs and the definition of indeterminacy. 
Section 3 studies neutrosophic topological spaces (NTSs) 
and the article closes with the final conclusions and some 
hints for future research included in section 4. 

2. Fuzzy and Intuitionistic Fuzzy Sets  

The electrical engineer Lofti Aliasker Zadeh, Professor 
of Computer Science at the University of Berkeley, 
introduced in 1965 [2] the concept of FS as follows: 

Definition 1: Let U be the universal set of the discourse, 
then a FS Α in U is defined with the help of its 
membership function m: U → [0,1] as the set of the 
ordered pairs  

 ( )( ) :{ },A x m x x U∈=  (1) 

The real number m(x) is called the membership degree 
of x in Α. The greater is m(x), the more x satisfies the 
characteristic property of Α. Many authors, for reasons of 
simplicity, identify a FS with its membership function.  

A crisp subset A of U is a FS in U with membership 
function taking the values m(x)=1, if x belongs to A,  
and 0 otherwise. The classical operations on crisp sets 
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(intersection, union, complement, etc.) are generalized in a 
natural way to FSs [[7], Chapter 2]. 

The infinite-valued on the interval [0,1]. FL is defined 
with the help of the concept of FS. Through FL, the fuzzy 
terminology is translated by algorithmic procedures into 
numerical values, operations are performed upon those 
values and the outcomes are returned into natural language 
statements in a reliable manner [8]. An important advantage 
of FL is that its rules are set in natural language with the 
help of linguistic, and therefore fuzzy, variables [9]. For 
general facts on FSs and FL we refer to the book [7].  

A difficulty appears, however, in FSs with the definition 
of the membership function, which is not unique, 
depending on the subjective perceptions of each person. In 
fact, the way of perceiving a concept (e.g. “tall”) is 
different from person to person, depending on the “signals” 
that each one receives from the real world about it. Thus, 
the only restriction about the definition of the membership 
function is to be compatible with the common logic; 
otherwise the corresponding FS does not provide a reliable 
representation of the corresponding real situation. 

For a more accurate quantification of the uncertainty 
Kassimir Atanassov, Professor of Mathematics at the 
Bulgarian Academy of Sciences, introduced the concept of 
IFS as follows [5]:  
Definition 2: An IFS A in the universe U is defined with 
the help of its membership function m: U→ [0,1] and its 
non-membership function n: U → [0,1] as the set of the 
ordered triples   

 ( ) ( )( ) ( ) ( ),  , : ,0{ }1A x m x n x x U m x n x∈ +≤ ≤=  (2) 

One can write m(x) + n(x) + h(x) = 1, where h(x) is called 
the hesitation degree of x. When h(x) = 0, then the 
corresponding IFS is reduced to an ordinary FS. The 
characterization “intuitionistic” is due to the fact that an 
IFS contains the intuitionistic idea, as it incorporates the 
degree of hesitation.  

For example, if A is the IFS of the clever students of a 
class and (x, 0.6, 0.2) ∈ A, then there is a 60% probability for 
the student x to be characterized as clever, a 20% probability 
to be characterized as not clever, and a 20% hesitation to be 
characterized as either clever or not. Most notions and 
operations concerning FSs can be extended to IFSs, which 
simulate successfully the existing imprecision in human 
thinking [10]. 

3. Neutrosophic Sets 

3.1. Basic Concepts 
The Romanian writer and mathematician Florentin 

Smarandache, Professor at the branch of Gallup of the 
New Mexico University, introduced the degree of 
indeterminacy/neutrality of the elements of the universe U 
and defined the concept of NS as follows [6]:  
Definition 3: A single valued NS (SVNS) A in U is of the form 

 
( ) ( ) ( )( )
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∈

+ ≤ 
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In (3) T(x), I(x), F(x) are the degrees of truth, 
indeterminacy and falsity of x in A respectively, called the 
neutrosophic components of x. For simplicity, we 
symbolize the SVNS A by A<T, I, F>. 

The etymology of the term “neutrosophy” comes from 
the adjective “neutral´ and the Greek word “sophia” (wisdom) 
and, according to Smarandanche who introduced it, means 
“the knowledge of neutral thought”. 

For example, let U be the set of the players of a football 
team and let A be the SVNS of the good players of U. 
Then each player x of U is characterized by a 
neutrosophic triplet (t, i, f) with respect to A, with t, i, f in 
[0, 1]. For instance, x(0.6, 0.2, 0.4) ∈ A means that there 
is a 60% probability for x to be a good player, a 20% 
probability to be unknown if x is a good player and a 40% 
probability for x to be not a good player. In particular, 
x(0,1,0) ∈ A means that we do not know absolutely 
nothing about x’s affiliation with A. 

Indeterminacy is defined to be in general everything 
which is between the two opposites of truth and falsity 
[11]. 

In an IFS indeterminacy is equal by default with 
hesitancy, i.e. we have I(x)=1- T(x) – F(x). Also, in a FS 
is I(x)=0 and F(x) = 1 – T(x), whereas in a crisp set is 
T(x)=1 (or 0) and F(x)= 0 (or 1). In other words, crisp sets, 
FSs and IFSs are special cases of SVNSs.  

When the sum T(x) + I(x) + F(x) of the neutrosophic 
components of x ∈ U in a SVNS A on U is <1 then it 
leaves room for incomplete information about x, when is 
equal to 1 for complete information, and when is greater 
than 1 for parasconsistent (i.e. contradiction tolerant) 
information about x. A SVNS may contain simultaneously 
elements leaving room for all the previous types of 
information.  

When T(x) + I(x) + F(x)<1, ∀ x∈ U then the 
corresponding SVNS is usually referred as picture FS 
(PiFS) [12]. In this case 1- T(x)-I(x)-F(x) is called the 
degree of refusal membership of x in A. The PiFSs’ based 
models are adequate in situations where we face human 
opinions involving answers of types yes, abstain, no and 
refusal. Voting is a representative example of such a 
situation. 

The difference between the general definition of a NS 
and the previously given definition of a SVNS is that in 
the general definition T(x), I(x) and F(x) may take values 
in the non-standard unit interval ]−0, 1+[ (including values 
<0 or >1) [6]. This could happen in real world situations. 
For example, in a company with full-time work 40 hours 
per week for its employees, an employee, upon his work, 
could belong by 40

40
=1 to the company (full-time job) or 

by 30
40

<1 (part-time job) or by 45
40

>1 (over-time job). 

Assume further that a full-time employee caused a damage 
to his job’s equipment, the cost of which will be taken 
from his salary. Then, if the cost is equal to 50

40  
of his 

weekly salary, the employee belongs this week to the 
company by - 10

40
<0. 

NSs, apart from vagueness, manage as well the cases of 
uncertainty due to ambiguity and inconsistency. In 
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ambiguity the existing information leads to several 
interpretations by different observers. For example, the 
statement “Boy no girl” written as “Boy, no girl” means 
boy, but written as “Boy no, girl” means girl. On the other 
hand, inconsistency appears when two or more pieces of 
information cannot be true at the same time. As a result 
the obtainable in this case information is conflicted or 
undetermined. For example, “the probability for raining 
tomorrow is 80%, but this does not mean that the 
probability for not raining is 20%, because they might be 
hidden weather factors”.  

The difficulty, however, of defining properly the 
neutrosophic components of an object still exists, for the 
same reason as for the membership function of a FS 
mentioned in the previous section. The same also happens 
with IFSs, and generally for any generalization of FSs 
involving membership functions. At any case, theories for 
managing the uncertainty, related to FSs, have been 
developed where the definition of a membership function 
is not necessary: grey systems/numbers [13], or it is 
overpassed by using either a pair of sets which give 
the lower and the upper approximation of the original 
crisp set: rough sets [14], or a suitable set of linguistic 
parameters: soft sets [15]. The present author has recently 
proposed a hybrid decision-making model using soft sets 
and grey numbers as tools [16]. 

3.2. Operations on Neutrosophic Sets 
The classical operations on crisp sets are generalized to 

NSs [17]. Here, for simplicity, we consider SVNSs and 
we define the subset and the complement of a SVNS, as 
well as the union and intersection of two SVNSs. 

Definition 4: Let A<TA, IA, FA> and B<TB, IB, FB> be 
two SVNSs in the universe U. Then A is called a subset of 
B (A⊆B), if, and only if, TA(x)≤TB(x), IA(x)≤IB(x) and 
FA(x)≥FB(x), ∀ x ∈ U. If we have simultaneously A⊆B 
and B⊆A, then A and B are called equal SVNSs (A=B).  

Definition 5: The complement of a SVNS A<TA, IA, FA> 
in U is the SVNS c(A)<FA, 1-IA, TA> in U.  

Definition 6: Let A<TA, IA, FA> and B<TB, IB, FB> be 
two SVNSs in the universe U. Then the union A∪B is the 
SVNS C<TC, IC, FC> in U, with TC = max {TA, TB}, IC = 
max {IA, IB} and FC = min {FA, FB}. 

Definition 7: Let A<TA, IA, FA> and B<TB, IB, FB> be 
two SVNSs in the universe U. Then the intersection A∩B 
is the SVNS C<TC, IC, FC> in U, with TC = min {TA, TB}, 
IC = min {IA, IB} and FC = max {FA, FB}. 

It is straightforward to check that if A, B are crisp sets 
(FSs, IFSs) then the previous definitions are reduced to 
the corresponding definitions for crisp sets (FSs, IFSs). 

Example 1:  Let U= {x1, x2, x3} be the universal set 
and A={(x1,0.3,0.3,0.6), ((x2,0.5,0.3,0.4), (x3,0.7,0.2, 0.5)}, 
B={(x1,0.6,0.1,0.2), (x2,0.3,0.2, 0.5), ((x3,0.3,0.1,0.6)}be 
two SVNSs in U. Then: 

i) Neither A⊆B, nor B⊆A (definition 4) 
ii) c(A)={( x1,0.6,0.7,0.3),( x2,0.4,0.7,0.5), (x3,0.5,0.8, 

0.7)} and c(B)={(x1,0.2,0.9,0.6), (x2,0.5,0.8,0.3), 
(x3,0.6,0.9,0.3)} (definition 5) 

iii)A∪B={(x1,0.6,0.3,0.6), (x2,0.5,0.3,0.5), 
(x3,0.3,0.1,0.5)} (definition 6) 

iv) A∩B={(x1,0.3,0.1,0.2), (x2,0.3,0.2,0.4), 
(x3,0.7,0.2,0.6)} (definition 7) 

4. Neutrosophic Topological Spaces 

FSs, FL and the related to them theories for managing 
the uncertainty have found many and important 
applications to almost all sectors of human activity  
(e.g. see [7], Chapter 6). Fuzzy mathematics, however, has 
also significantly developed in theoretical level giving 
important insights even to traditional branches of pure 
mathematics, like Algebra, Geometry, Analysis, Topology, 
etc. 

Topological spaces is the most general category of 
mathematical spaces, in which fundamental mathematical 
concepts like convergence, continuity, compactness, etc. 
are defined [18]. Metric spaces and manifolds are special 
forms of topological spaces satisfying some extra conditions. 

It is recalled that the concept of a topological space is 
defined as follows:  

Definition 8: A topology T on a non-empty set U is 
defined as a collection of subsets of U such that:  

1. U and the empty set belong to T   
2. The intersection of any two elements of T and the union 

of an arbitrary number of elements of T belong also to T. 
Trivial examples are the discrete topology of all subsets 

of U and the non-discrete topology T= {U, ∅}. The usual 
topology on the set R of real numbers is defined as the set 
of all subsets A of R with the property that, for each a in A, 
there exists ε>0, such that (a-ε, a+ ε)⊆A. 

The elements of a topology T on U are called open 
subsets of U and their complements are called closed 
subsets of U. The pair (U, T) defines a topological space 
(TS) on U.  

The concept of TS has been extended to fuzzy TS [19], 
to intuitionistic fuzzy TS [20], to soft TS [21], etc. Here we 
describe how one can extend the concept of TS to 
neutrosophic TS [22]. 

Definition 9: i) The empty NS ∅N on the universe U is 
defined to be ∅N = {(x,0,0,1): x ∈ U}. 

ii) The universal NS UN on U is defined to be 
UN = {(x,1,1,0): x ∈ U}. 
It is straightforward to check that for each NS A in U is 

A∪UN = UN, A∩UN = A, A∪∅N = A and A∩∅N = ∅N. 
Definition 10: A neutrosophic topology T on a non-

empty set U is defined as a collection of NSs on U such 
that:  

1. UN and ∅N belong to T, and   
2. The intersection of any two elements of T and the 

union of an arbitrary number of elements of T belong also 
to T. 

Trivial examples are the discrete neutrosophic topology 
of all NSs in U and the non-discrete neutrosophic 
topology T= {UN, ∅N}.  

The elements of a neutrosophic topology T on U are 
called open NSs in U and their complements are called 
closed NSs in U. The pair (U, T) defines a neutrosophic 
topological space (NTS) on U.  

Example 2: Let U = {u} and let A = {(u ,0.5,0.5,0.4)},  
B = {(u ,0.4,0.6,0.8)}, C = {(u ,0.5,0.6,0.4)},  
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D ={(u,0.4,0.5,0.8)} be NSs in U. Then it is 
straightforward to check that the collection T = {∅N, UN, 
A, B, C, D} is a neutrosophic topology on U. 

We close by extending the concepts of convergence, 
continuity, compact TS and Hausdorff TS to NTSs. 

Definition 11: Given two NSs A and B of the NTS (U, T), 
B is said to be a neighborhood of A, if there exists an 
open NS O such that A⊆O⊂B. Further, we say that a 
sequence {An} of NSs of (U, T) converges to the NS A of 
(U, T), if there exists a positive integer m such that for 
each integer n≥m and each neighborhood B of A we have 
that An⊂B. 

The following theorem generalizes the Zadeh’s 
extension principle for FSs [7] to NSs: 

Theorem 1: Let U and V be two non-empty crisp sets 
and let g: U→V be a function. Then g can be extended to 
a function G mapping NSs in U to NSs sets in V. 

Proof: Let A<TA, IA, FA> be a NS in U. Then its image 
G(A) is a NS B in V, whose neutrosophic components are 
defined as follows: Given v in V, consider the set  
g-1(v)={u ∈ U: g(u)=v}. If g-1(v)=∅, then TB(v)=0, and if 
g-1(v)≠∅, then TB(v) is equal to the maximal value of all 
TA(u) such that u ∈ g-1(v). Conversely, the inverse image 
G-1(B) is the NS A in U with truth membership function 
TA(u)=TB(g(u)), for each u ∈ U. In an analogous way one 
can determine the neutrosophic components IB and FB of B. 

Definition 12: Let (U,T) and (V,S) be two NTSs and let 
g be a function g: U→V. According to Theorem 1, g can 
be extended to a function G which maps NSs of U to NSs 
of V. We say then that g is a neutrosophicaly-continuous 
function, if, and only if, the inverse image of each open 
NS of V through G is an open NS of U. 

Definition 13: A family A = {Ai, i∈I} of NSs of a NTS 
(U, T) is called a cover of U, if U = i

i I
A .

∈


 If the elements 

of A are open NSs, then A is called an open cover of U. 
Also, each NS subset of A which is also a cover of U is 
called a sub-cover of A. The NTS (U, T) is said to be 
compact, if every open cover of U contains a sub-cover 
with finitely many elements.  

Definition 14: A NTS (U, T) is called a T1-NTS, if, and 
only if, for each pair of elements u1, u2 of U, u1≠u2, there 
exist at least two open NSs O1 and O2 such that u1∈O1,  
u2∉O1 and u2∈O2, u1∉O2. 

Definition 15: A NTS (U, T) is called a T2-NTS, if, and 
only if, for each pair of elements u1, u2 of U, u1≠ u2, there 
exist at least two open NSs O1 and O2 such that u1∈O1, 
u2∈O2 and O1∩O2 = ∅N.  

A T2-NTS is also called a Hausdorff or a separable 
NTS. Obviously a T2-NTS is always a T1-NTS. 

5. Discussion and Conclusions 

In this work the concept of NS in the universe U, 
introduced by Smarandanche in 1995, which describes the 

existing in real life indeterminacy, was studied. The basic 
operations between NSs were presented and the classical 
notion of TS was extended to NTS. It was further shown 
that convergence, continuity, compact TS and Hausdorff 
TS can be naturally extended to NTSs. 

It looks in general that the combination of two or more 
of the alternative theories developed for tackling the 
existing in real life uncertainty, is a promising tool for 
obtaining better results in a variety of human activities 
characterized by uncertainty (e.g. see [16]). Consequently 
this could be a fruitful area for future research. 
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