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Abstract  Amer et al. [1] considered the distributions of the sum and the difference of two independent and 
identically distributed random variables with the common Quasi Lindley distribution. They derived, very nicely, the 
above mentioned distributions and provided certain important mathematical and statistical properties as well as 
simulations and applications of the new distributions. Wang and Ma [2] considered the sum of the gamma random 
variables under the assumption of independence of the summands and presented very interesting results. In this short 
note, we like to show that the assumption of "independence" can be replaced with a much weaker assumption of 
"sub-independence" in both papers. Then we present certain characterizations of the distributions derived by  
Amer et al. [1], called 2SQLindley and 2DQLindley distributions. 
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1. Introduction 

As we have done in a couple of our previous papers, to 
make this short note self contained, we will copy some 
parts of our work [3] here. 

We may in some occasions have asked ourselves if 
there is a concept between "uncorrelatedness" and 
"independence" of two random variables. It seems that the 
concept of "sub-independence" is the one: it is much 
stronger than uncorrelatedness and much weaker than 
independence. The notion of sub-independence seems 
important in the sense that under usual assumptions, 
Khintchine’s Law of Large Numbers and Lindeberg-
Levy’s Central Limit Theorem as well as other important 
theorems in probability and statistics hold for a sequence 
of s.i. (sub-independent) random variables. While sub-
independence can be substituted for independence in 
many cases, it is difficult, in general, to find conditions 
under which the former implies the latter. Even in the case 
of two discrete identically distributed rv’s (random 
variables) X and Y, the joint distribution can assume 
many forms consistent with sub-independence. 

Limit theorems as well as other well-known results in 
probability and statistics are often based on the 
distribution of the sums of independent (and often 
identically distributed) random variables rather than the 
joint distribution of the summands. Therefore, the full 
force of independence of the summands will not be  
 

required. In other words, it is the convolution of the 
marginal distributions which is needed, rather than the 
joint distribution of the summands which, in the case of 
independence, is the product of the marginal distributions. 
The concept of sub-independence, which is weaker  
than that of independence, is shown to be sufficient to 
yield the conclusions of these theorems and results.  
This is precisely the reason for the statement:  
"why assume independence when you can get by with 
sub-independence". 

The concept of sub-independence can help to provide 
solution for some modeling problems where the variable 
of interest is the sum of a few components. Examples 
include household income, the total profit of major firms 
in an industry, and a regression model 𝑌𝑌 = 𝑔𝑔(𝑋𝑋) + 𝜀𝜀 
where 𝑔𝑔(𝑋𝑋)  and 𝜀𝜀  are uncorrelated, however, they may 
not be independent. For example, in Bazargan et al. [4], 
the return value of significant wave height (𝑌𝑌) is modeled 
by the sum of a cyclic function of random delay 𝐷𝐷,  𝑔𝑔� (D) , 
and a residual term ε�. They found that the two components 
are at least uncorrelated but not independent and used sub-
independence to compute the distribution of the return 
value. 

Let 𝑋𝑋 and 𝑌𝑌 be two 𝑟𝑟𝑟𝑟′𝑠𝑠 (random variables) with joint 
and marginal 𝑐𝑐𝑐𝑐𝑐𝑐′𝑠𝑠  (cumulative distribution functions) 
𝐹𝐹𝑋𝑋 , 𝑌𝑌, 𝐹𝐹𝑋𝑋  and 𝐹𝐹𝑌𝑌  respectively. Then 𝑋𝑋 and 𝑌𝑌 are said to be 
independent if and only if 

 ( ) ( ) ( ) ( ) 2
, , , , ,X Y X YF x y F x F y for all x y= ∈  (1.1) 
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or equivalently, if and only if 

 ( ) ( ) ( ) ( ) 2
, , , ,X Y X Ys t s t for all s tϕ ϕ ϕ= ∈,   (1.2) 

where 𝜑𝜑𝑋𝑋 ,𝑌𝑌(𝑠𝑠, 𝑡𝑡), 𝜑𝜑𝑋𝑋 (𝑠𝑠) and 𝜑𝜑𝑌𝑌 (𝑡𝑡), respectively, are the 
corresponding joint and marginal 𝑐𝑐𝑐𝑐′𝑠𝑠  (characteristic 
functions). Note that (1.1) and (1.2) are also equivalent to 

 ( ) ( ) ( )
, .

P X A and Y B P X A P Y B
for all Borel sets A B

∈ ∈ = ∈ ∈
 (1.3) 

The concept of sub-independence, as far as we have 
gathered, was formally introduced by Durairajan (1979) 
and developed by Hamedani in the past 40 years, stated as 
follows: The 𝑟𝑟𝑟𝑟′𝑠𝑠 𝑋𝑋  and 𝑌𝑌  with 𝑐𝑐𝑐𝑐𝑐𝑐′𝑠𝑠 𝐹𝐹𝑋𝑋  and 𝐹𝐹𝑌𝑌  are 𝑠𝑠. 𝑖𝑖. 
(sub-independent) if the 𝑐𝑐𝑐𝑐𝑐𝑐 of 𝑋𝑋 + 𝑌𝑌 is given by 

 
( ) ( )( )
( ) ( )

*

, ,
X Y X Y

X Y

F z F F z

F z y dF y z
+ =

= − ∈∫


  (1.4) 

or equivalently if and only if 

 ( ) ( ) ( ) ( ), , ,  .X Y X Y X Yt t t t t for all tϕ ϕ ϕ ϕ+ = = ∈ (1.5) 

The drawback of the concept of sub-independence in 
comparison with that of independence has been that the 
former does not have an equivalent definition in the sense 
of (1.3) which some believe, to be the natural definition of 
independence. We found such a definition which is stated 
below. We shall give the definition for the continuous case 
(Definition 1.1). 

We observe that the half-plane 𝐻𝐻 = {(𝑥𝑥, 𝑦𝑦): 𝑥𝑥 + 𝑦𝑦 < 0} 
can be expressed as a countable disjoint union of 
rectangles: 

 
1

,i i
i

H E F
∞

=
= ×


 

where 𝐸𝐸𝑖𝑖  and 𝐹𝐹𝑖𝑖  are intervals. Now, let (𝑋𝑋, 𝑌𝑌): 𝛺𝛺 → ℝ2 be 
a continuous random vector and for ∈ ℝ , let 

 ( ) ( ){ }:cA X Y cω ω ω= ∈Ω + <  

and 

 

( ) ( )

( ) ( )

: ,
2

: .
2

c
ii

c
ii

cA X E

cB Y F

ω ω

ω ω

 = ∈Ω − ∈ 
 
 = ∈Ω − ∈ 
 

 

Definition 1.1. The continuous 𝑟𝑟𝑟𝑟′𝑠𝑠 𝑋𝑋 and 𝑌𝑌 are 𝑠𝑠. 𝑖𝑖. if for 
every 𝑐𝑐 ∈ ℝ 

 ( ) ( )( ) ( )( )1 .c c
c i iiP A P A P B∞

== ∑  (1.6) 

To see that (1.6)  is equivalent to (1.4) , observe that 
(𝐿𝐿𝐿𝐿𝐿𝐿 of (1.6)) 

 ( ) ( ) ( )( ), ,c cP A P X Y c P X Y H= + < = ∈  (1.7) 

where 𝐻𝐻𝑐𝑐 = {(𝑥𝑥, 𝑦𝑦): 𝑥𝑥 + 𝑦𝑦 < 𝑐𝑐}. Now, if 𝑋𝑋  and 𝑌𝑌  are 𝑠𝑠. 𝑖𝑖. 
then 

 ( ) ( )( )c X Y cP A P P H= ×  

where 𝑃𝑃𝑋𝑋, 𝑃𝑃𝑌𝑌  are probability measures on ℝ defined by 

 ( ) ( ) ( )) ( ,X YP B P X B and P B P Y B= ∈ = ∈  

and 𝑃𝑃𝑋𝑋 × 𝑃𝑃𝑌𝑌  is the product measure. 
We also observe that (𝑅𝑅𝑅𝑅𝑅𝑅 of (1.6)) 

 

( )( ) ( )( )
1

1

1

1

2 2

2 2

.
2 2

c c
i i

i

i i
i

i i
i

X Y i i
i

P A P B

c cP X E P Y F

c cP X E P Y F

c cP P E F

∞

∞

∞

∞

=

=

=

=

   = − ∈ − ∈   
   

   = ∈ + ∈ +   
   

   = × + × +   
   

∑

∑

∑

∑

 

Now, (1.7)  and (1.8)  will be equal if 𝐻𝐻𝑐𝑐 =
∪ 𝑖𝑖=1
∞ ��𝐸𝐸𝑖𝑖 + 𝑐𝑐

2
� × �𝐹𝐹𝑖𝑖 + 𝑐𝑐

2
��, which is true since the points 

in 𝐻𝐻𝑐𝑐  are obtained by shifting each point in 𝐻𝐻 over to the 

right by 
2
c  units and then up by 

2
c  units. 

If 𝑋𝑋 and 𝑌𝑌 are 𝑠𝑠. 𝑖𝑖., then unlike independence, 𝑋𝑋 and 𝛼𝛼𝛼𝛼 
are not necessarily 𝑠𝑠. 𝑖𝑖.  for any real 𝛼𝛼 ≠ 1 . This 
demonstrates how weak is the concept of sub-
independence in comparison with that of independence. 
Please observe the following simple example. 
Example 1.1. Let 𝑋𝑋 and 𝑌𝑌 have the joint 𝑐𝑐𝑐𝑐 given by 

 

( )

( ){ }
( ) ( ){ }

( )

, 1 2

2 2
1 2

2 2 2
1 2 1 2 1 2

2
1 2

,

exp / 2

1 exp / 4 ,

, ,

X Y t t

t t

t t t t t t

t t

ϕ

β

= − +

 × + − +  

∈

 

where 𝛽𝛽  is an appropriate constant. (The characteristic 
function is the Fourier transform of 𝑝𝑝𝑝𝑝𝑝𝑝  (probability 
density function), so the corresponding joint 𝑝𝑝𝑝𝑝𝑝𝑝 is given 
by 

 

( )

( ){ }
( ) ( ){ }

( )

2 2

2 2

2

,
1 exp / 2

2

1 16 , exp / 2 ,

, ,

f x y

x y

p x y x y

x y

π

β

= − +

 × − − +  

∈

 

where 𝑝𝑝(𝑥𝑥, 𝑦𝑦) = {6𝑥𝑥𝑥𝑥 − 2𝑥𝑥2 − 2𝑦𝑦2 + 4𝑥𝑥2𝑦𝑦2 − 2𝑥𝑥3𝑦𝑦 −
2𝑥𝑥𝑦𝑦3+1). 

Then 𝑋𝑋 and 𝑌𝑌 are 𝑠𝑠. 𝑖𝑖. standard normal 𝑟𝑟𝑟𝑟′𝑠𝑠, and hence 
𝑋𝑋 + 𝑌𝑌 is normal with mean 0 and variance 2, but 𝑋𝑋 and 
−𝑌𝑌 are not 𝑠𝑠. 𝑖𝑖. and consequently 𝑋𝑋 − 𝑌𝑌 does not have a 
normal distribution. 

The concept of sub-independence defined above can be 
extended to 𝑛𝑛 (> 2) 𝑟𝑟𝑟𝑟’𝑠𝑠 as follows. 
Definition 1.2. The 𝑟𝑟𝑟𝑟′𝑠𝑠 𝑋𝑋1, 𝑋𝑋2, . . . , 𝑋𝑋𝑛𝑛  are 𝑠𝑠. 𝑖𝑖. if for each 
subset �𝑋𝑋𝛼𝛼1, 𝑋𝑋𝛼𝛼2, . . . , 𝑋𝑋𝛼𝛼𝑟𝑟 � of { 𝑋𝑋1, 𝑋𝑋2, . . . , 𝑋𝑋𝑛𝑛} 
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 ( ) ( )11
,..., ,..., , .r

X X i Xr i
t t t for all tα α αϕ ϕ== Π ∈  

2. Remarks 

i) If the 𝑟𝑟𝑣𝑣′𝑠𝑠 𝑋𝑋  and 𝑌𝑌  are 𝑠𝑠. 𝑖𝑖. 𝑖𝑖. 𝑑𝑑.  with common  
Quasi Lindley distribution with parameters α,  𝜃𝜃 , the 
characteristic function of 𝑋𝑋 + 𝑌𝑌 is 

 ( )
( )

( ) ( )

44

4 8 , .
1

X Y
it

t t
t

θ α θ θ
ϕ

α θ
+

− +  = ∈
+ +

  

The 𝑐𝑐𝑐𝑐 of 𝑋𝑋 is 

 

( ) ( )

( )
( ) ( )

0
22

2 4

1

, ,
1

itx x
X

x
t e e dx

it
t

t

∞
θθ α θ

ϕ
α

θ α θ θ

α θ

−+
=

+

− +  = ∈
+ +

∫



 

and since 𝑋𝑋 and 𝑌𝑌 are 𝑠𝑠. 𝑖𝑖., we have 

 
( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

222

2 4

44

4 8

1

, ,
1

X Y X Y
it

t t t
t

it
t

t

θ α θ θ
ϕ ϕ ϕ

α θ

θ α θ θ

α θ

+

 − +   = =  
+ +  

− +  = ∈
+ +



 

ii) If the 𝑟𝑟𝑣𝑣′𝑠𝑠 𝑋𝑋  and 𝑌𝑌  are 𝑖𝑖. 𝑑𝑑.  with common Quasi 
Lindley distribution with parameters , ,α θ  and if 𝑋𝑋  and 
−𝑌𝑌 are 𝑠𝑠. 𝑖𝑖., the characteristic function of 𝑋𝑋 − 𝑌𝑌 is 

 ( )
( )

( ) ( )

44 4 4 2

44 2 2

1
, .

1
X Y

t
t t

t

θ θ α α
ϕ

α θ
−

 + +  = ∈
+ +

  

The 𝑐𝑐𝑐𝑐 of 𝑋𝑋 − 𝑌𝑌, under the assumption of 𝑠𝑠. 𝑖𝑖. of 𝑋𝑋 and 
−𝑌𝑌, is 

 

( )
( ) ( ) ( ) ( )

( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

2 22 2 2 2 2 2

2 22 22 2 2 2

44 4 4 2

44 2 2

1 1

1 1

1
, .

1

X Y

X Y X Y

t

t t t t

it it

t t

t
t

t

ϕ

ϕ ϕ ϕ ϕ

θ θ α α θ θ α α

α θ α θ

θ θ α α

α θ

−

−= = −

     + − + +        =   
  + + + +
  

 + +  = ∈
+ +



 

iii) In view of i) and ii), the assumption of 
"independence" in Amer et al. paper can be replaced with 
that of "sub-independence". 

iv) Equation (2.3) of Wang and Ma holds for 𝑠𝑠. 𝑖𝑖. 
gamma 𝑟𝑟. 𝑣𝑣.′ 𝑠𝑠. 

v) In Theorem 3.2 of Wang and Ma, the distribution of 
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1  is a gamma distribution with parameters ∑ 𝛼𝛼𝑖𝑖𝑛𝑛

𝑖𝑖=1 , 
𝛽𝛽 under the assumption that 𝑋𝑋𝑖𝑖 ′ 𝑠𝑠 are 𝑠𝑠. 𝑖𝑖. and 𝛽𝛽𝑖𝑖′𝑠𝑠 are equal 
to 𝛽𝛽. 

vi) In Theorem 5.1 of Wang and Ma, the distribution of 
∑ 𝑋𝑋𝑖𝑖𝑚𝑚
𝑖𝑖=1  is a Chi-square distribution with parameter ∑ 𝑛𝑛𝑖𝑖𝑚𝑚

𝑖𝑖=1  
under the assumption that 𝑋𝑋𝑖𝑖 ′ 𝑠𝑠 are 𝑠𝑠. 𝑖𝑖.. 

vii) For a detailed treatment of the concept of  
sub-independence, we refer the interested reader to 
Hamedani [3]. 

3. Characterizations of the 2S-Lindley 
and 2D-Lindley Distributions 

Amer et al. [1] introduced the distributions of the sum 
and differences of two 𝑖𝑖. 𝑖𝑖. 𝑑𝑑.(now, 𝑠𝑠. 𝑖𝑖. 𝑖𝑖. 𝑑𝑑.) Quasi Lindley 
random variables with parameters 𝛼𝛼 > −1, 𝜃𝜃 > 0 (called 
2SQLindley and 2DQLindley) with their respective 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
given by 

 
( )

( )

2

2 2 2
2

2 , 0,
61

SQLindley

x

f x

x xx e xθθ θα θα
α

− 
= + + >  +  

 (3.1) 

and 

 

( )

( )
( )

2

2
2 2 1 2 2 1 , .

4 1

DQLindley

x

f x

e x x
θθ θ α α α

α

−
 = + + + + ∈ +


(3.2) 

Following our [3] work, to understand the behavior of 
the data obtained through a given process, we need to be 
able to describe this behavior via its approximate 
probability law. This, however, requires to establish 
conditions which govern the required probability law. In 
other words we need to have certain conditions under 
which we may be able to recover the probability law of 
the data. So, characterization of a distribution is important 
in applied sciences, where an investigator is vitally 
interested to find out if their model follows the selected 
distribution. Therefore, the investigator relies on 
conditions under which their model would follow a 
specified distribution. A probability distribution can be 
characterized in different directions one of which is based 
on the truncated moments. This type of characterization 
initiated by Galambos and Kotz [5] and followed by other 
authors such as Kotz and Shanbhag [6], Glänzel et al. [7], 
Glänzel [8], Glänzel and Hamedani [9] and Kim and Jeon 
[10], to name a few. For example, Kim and Jeon [10] 
proposed a credibility theory based on the truncation of 
the loss data to estimate conditional mean loss for a given 
risk function. It should also be mentioned that 
characterization results are mathematically challenging 
and elegant. In this section, we present characterizations 
2S-Lindley and 2D-Lindley distributions based on the 
conditional expectation (truncated moments) of certain 
function of the random variable. 

We will employ Theorem 1 of Glänzel [8] given in the 
Appendix A. As shown in Glänzel [11], this 
characterization is stable in the sense of weak convergence. 
Proposition 3.1. Let 𝑋𝑋 be a continuous random variable 

and let ( )
12 2

1 2
1 6

xq x x x θα θα
−

−  
= + +  

 
 and 𝑞𝑞2(𝑥𝑥) =
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𝑞𝑞1(𝑥𝑥)𝑒𝑒−𝜃𝜃𝜃𝜃  for 𝑥𝑥 > 0. Then 𝑋𝑋 has 𝑝𝑝𝑝𝑝𝑝𝑝 (3.1) if and only if 
the function 𝜉𝜉 defined in Theorem 1 is of the form 

 ( ) 1 , 0.
2

xx e xθξ −= >  

Proof. If 𝑋𝑋 has 𝑝𝑝𝑝𝑝𝑝𝑝 (3.1), then 

( )( ) ( )
( )

2 1 21 | , 0,
1

x
S LF x E q X X x e xθθ

α
−

−− ≥ = >  
+

 

and 

 
( )( ) ( )

( )

2 2

2
2

1 |

, 0,
2 1

S L

x

F x E q X X x

e xθθ

α

−

−

− ≥  

= >
+

 

and hence 

 ( ) 1 , 0.
2

xx e xθξ −= >  

We also have 

 ( ) ( ) ( ) ( )1 2 1
1 0, 0.
2

xx q x q x q x e for xθξ − <− = − >  

Conversely, if 𝜉𝜉 is of the above form, then 

 ( ) ( ) ( )
( ) ( ) ( )

1

1 2
, 0.

x q x
s x x

x q x q x
ξ

θ
ξ

=
−

′ >
′

=  

and 

 ( ) .s x xθ=  

Now, according to Theorem 1, 𝑋𝑋 has density (3.1). 
Corollary 3.1. Suppose 𝑋𝑋 is a continuous random variable. 
Let 𝑞𝑞1(𝑥𝑥)  be as in Proposition 3.1. Then 𝑋𝑋  has density 
(3.1) if and only if there exist functions 𝑞𝑞2 and 𝜉𝜉 defined 
in Theorem 1 for which the following first order 
differential equation holds 

 ( ) ( )
( ) ( ) ( )

1

1 2
, 0.

x q x
x

x q x q x
ξ

θ
ξ

= >
−

′
 

Corollary 3.2. The differential equation in Corollary 3.1 
has the following general solution 

 ( ) ( )( ) ( )1
1 2 ,x xx e e q x q x Dθ θξ θ −− = − +  ∫  

where 𝐷𝐷 is a constant. 
Proof. If 𝑋𝑋  has pdf (3.1), then clearly the differential 
equation holds. Now, if the differential equation holds, 
then 

 ( ) ( ) ( )( ) ( )1
1 2 ,x x q x q xξ ξ θ θ −

= −′  

or 

 ( ) ( ) ( )( ) ( )1
1 2 ,x x xx e x e e q x q xθ θ θξ ξ θ θ −− − −− = −′  

or 

 ( ){ } ( )( ) ( )1
1 2 ,x xd e x e q x q x

dx
θ θξ θ −− −= −  

from which we arrive at 

 ( ) ( )( ) ( )1
1 2 ,x xx e e q x q x Dθ θξ θ −− = − +  ∫  

A set of functions satisfying the above differential 
equation is given in Proposition 3.1 with 𝐷𝐷 = 0. Clearly, 
there are other triplets (𝑞𝑞1, 𝑞𝑞2, 𝜉𝜉) satisfying the conditions 
of Theorem 1. 
Remark 3.1. Similar results can be stated for the 
2DQLindley distribution as well. 
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Appendix A 

Theorem 1. Let (𝛺𝛺, ℱ, P) be a given probability space and let 𝐻𝐻 = [𝑎𝑎, 𝑏𝑏] be an interval for some 𝑎𝑎 < 𝑏𝑏 (𝑎𝑎 = −∞, 𝑏𝑏 =
∞ might as well be allowed). Let 𝑋𝑋:𝛺𝛺 → 𝐻𝐻 be a continuous random variable with the distribution function 𝐹𝐹 and let 𝑞𝑞1 
and 𝑞𝑞2 be two real functions defined on 𝐻𝐻 such that 

( ) ( ) ( )2 1E | E | , ,q X X x q X X x x x Hξ≥ = ≥ ∈        

is defined with some real function 𝜉𝜉. Assume that 𝑞𝑞1, 𝑞𝑞2 ∈ 𝐶𝐶1(𝐻𝐻), 𝜉𝜉 ∈ 𝐶𝐶2(𝐻𝐻) and 𝐹𝐹 is twice continuously differentiable 
and strictly monotone function on the set 𝐻𝐻. Finally, assume that the equation 𝜉𝜉𝑞𝑞1 = 𝑞𝑞2 has no real solution in the interior 
of 𝐻𝐻. Then 𝐹𝐹 is uniquely determined by the functions 𝑞𝑞1, 𝑞𝑞2 and ,ξ  particularly 

( ) ( )
( ) ( ) ( ) ( )( )

1 2
exp ,

x

a

u
F x C s u du

u q u q u
ξ

ξ
−

−

′
= ∫  

where the function 𝑠𝑠 is a solution of the differential equation 1

1 2

qs
q q
ξ

ξ
′

−
′

=  and 𝐶𝐶 is the normalization constant, such that 

1.
H

dF =∫  

Note: The goal is to have the function 𝜉𝜉(𝑥𝑥) as simple as possible. 
We like to mention that this kind of characterization based on the ratio of truncated moments is stable in the sense of 

weak convergence (see, [11]), in particular, let us assume that there is a sequence {𝑋𝑋𝑛𝑛}  of random variables with 
distribution functions {𝐹𝐹𝑛𝑛} such that the functions 𝑞𝑞1𝑛𝑛  , 𝑞𝑞2𝑛𝑛   and 𝜉𝜉𝑛𝑛   (𝑛𝑛 ∈ ℕ) satisfy the conditions of Theorem 1 and let 
𝑞𝑞1𝑛𝑛  → 𝑞𝑞1, 𝑞𝑞2𝑛𝑛  → 𝑞𝑞2 for some continuously differentiable real functions 𝑞𝑞1 and 𝑞𝑞2 . Let, finally, 𝑋𝑋 be a random variable 
with distribution 𝐹𝐹.  Under the condition that 𝑞𝑞1𝑛𝑛  (𝑋𝑋)  and 𝑞𝑞2𝑛𝑛  (𝑋𝑋)  are uniformly integrable and the family {𝐹𝐹𝑛𝑛}  is 
relatively compact, the sequence 𝑋𝑋𝑛𝑛   converges to 𝑋𝑋 in distribution if and only if 𝜉𝜉𝑛𝑛   converges to 𝜉𝜉, where 

( )
( )
( )

2

1

|
|

E q X X x
x

E q X X x
ξ

≥  =
≥  

 

This stability theorem makes sure that the convergence of distribution functions is reflected by corresponding 
convergence of the functions 𝑞𝑞1, 𝑞𝑞2 and 𝜉𝜉, respectively. It guarantees, for instance, the ‘convergence’ of characterization 
of the Wald distribution to that of the Lévy-Smirnov distribution if 𝛼𝛼 → ∞. 

A further consequence of the stability property of Theorem 1 is the application of this theorem to special tasks in 
statistical practice such as the estimation of the parameters of discrete distributions. For such purpose, the functions 𝑞𝑞1, 𝑞𝑞2 
and, specially, 𝜉𝜉 should be as simple as possible. Since the function triplet is not uniquely determined it is often possible 
to choose 𝜉𝜉  as a linear function. Therefore, it is worth analyzing some special cases which helps to find new 
characterizations reflecting the relationship between individual continuous univariate distributions and appropriate in 
other areas of statistics. 

In some cases, one can take 𝑞𝑞1(𝑥𝑥) ≡ 1, which reduces the condition of Theorem 1 to E[𝑞𝑞2(𝑋𝑋) | 𝑋𝑋 ≥ 𝑥𝑥] = 𝜉𝜉(𝑥𝑥), 𝑥𝑥 ∈ 𝐻𝐻. 
We, however, believe that employing three functions 𝑞𝑞1 , 𝑞𝑞2 and 𝜉𝜉 will enhance the domain of applicability of Theorem 1. 
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