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Abstract The solution of Differential Equations is an important topic for deliberation among scientists. However,
until today, nothing is known on a single-step block method of p-stable for solving third-order Differential Equations
(IVPs) whose accuracy is ninth order. This paper focuses on the derivation, analysis, and implementation of the one-
step implicit hybrid block method with seven off-step points for direct solution of general third-order ordinary
differential equations' initial value problems (IVVPs). For the solution of 1\VVPs, the power series functions were
utilized as the basis function. To determine the unknown parameters, an approximate solution from the basis
function was interpolated at chosen off-grid points. The third derivative of the estimated solution was collocated at
all grid and off-grid points to produce a system of linear equations. Consistency, zero stability, convergence, and
absolute stability were all evaluated on the method. The numerical results achieved through implementation are quite
close to the theoretical solutions and compare well to other novel methods in the literature.
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1. Introduction

This research considers a third-order Ordinary
Differential Equations (ODES) of the form
ym — f (X, y: yr, yr/) y X — 7 ,

Y'<Xo) =N V"(Xo) =72
where f is a given real-valued function that is continuous

within the integration interval. The study of thin-film flow,
fluid dynamics and mechanics, entry-flow phenomena,
hydrodynamics, the constant flow of water in a long
rectangular tank, and other problems of the kind Eq. (1)
arises. The conventional way of obtaining a numerical
solution of Eqg. (1) is by reduction to an equivalent system
of first-order ODEs of the form

y'=f(xy)y(@)=r feClab],xyeR (2

This method is extensively discussed in the works of
Refs. [1,2,3], and many others. Despite its enormous
success, this approach is not without drawbacks. Computer
programs associated with method implementation are
frequently complicated, particularly subroutines to supply
the starting values for the methods, resulting in longer
computer time and requiring more computational work

Refs. [4,5,6]. Direct techniques were devised to overcome
the disadvantages. The works in this category are
implemented in predictor-corrector Refs. [7,8,9] or block
mode (Refs. [10-14]), and their stability domain was
thoroughly investigated. This work adopted an approach
based on collocation and interpolation of power series
approximate solution to derive a one-step hybrid scheme
with seven off-step points for the direct solution of general
third-order ODEs.

2. Derivation of the Method

The series solution techniques appraised by Refs.
[15,16,17,18] for obtaining the unknown function of
differential equations was adopted as the research
methodology. The basis function is considered as an
approximate solution of Eq. (1) which is a power series
representation of the form

(r+s)-1 .
y(x)= 3 ajx). (3
j=0
The third derivative of Eq. (3) gives
(r+s)-1 .
y= 3 i(i-1(i-2)aj® (4)
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Equating Eq. (4) to Eq. (1) vyields the differential
system
(r+s)-1 ) i
T i(i-D(i-2apd
j=0
= (% y(%), y'(x), y"(x)),

Where the's are the parameters to be determined rand s
denote the number of collocation and interpolation points
respectively. Collocating Eq. (5) at the mesh points

(5)

x=xn+j,j:0(—Jl and interpolating Eg. (3) at

X=Xnyjr )= g yields a system of equations

|l |
|~

(r+s)-1 )
Z anJ=Yn+j’ i=
j=0

oo | o1

s ©)
8 8

(r+s)-1

> iG-DG-2apd P =1y, j=0(%)1 @

j=0

By putting these systems of equations in matrix form
and then solved to obtain the values of parameters,
j= 0,%,...,1Which when substituted in Eq. (4), yields, after

some simplification, a hybrid
continuous coefficients of the form

linear method with

7 8
Y= aj)y jO+h X g0Of jO© ©
=5 g Mg =0 g Mg

Where the coefficients «  (t) and j; (t) are given as

8 8
as =(4ht-3)(8ht-7)
8
as =—(8ht-5)(8ht—7)
4
a7 =(8ht—5)(4ht —3)
8
1 3
=~ h3(8ht—7)(4ht—3)(8ht-5
Po = 50437401600 ( i i )

(33554432h8t8 ~132120576h"t” +208928768h5t°
~171147264h°t° + 78393344h*t* — 20199936h°t3
+2767040h%t? —174312ht + 2123)

5 = 1
% " 5109350400

h® (8ht —5)(4ht —3)(8ht - 7)
(67108864h8t8 —252706816h"t’ +371720192h5t°

—288042240h°t° +94834688h*t* —11564032h3t°
—1938880h%t? + 645776ht — 48499)

1

1 = 554675200

h3 (4ht —3)(8ht —5)(8ht - 7)

(11744052h8t8 —420051840h"t" +576978944h5t°
—3675517696h°t> +101924864h*t* — 4896896h°%t°
—~1652224h%t? —294986ht + 90101 )

By = 1

— —  n3(8ht—5)(4ht—3)(8ht-7
S 5109350400 ( I I )

(469762048h8t8 ~1607467008h"t” + 2042626048n5°

~1161166848h°t° + 268251136h*t* —10773504h%t>
~1387328h%t? + 729744ht - 457457 )

Pr=- L

— ~  n3(8ht—5)(4ht—3)(8ht—7
5 2043740160 ( I ) )

(234881024h8t8 —763363328h"t’ +903086080h°t®
—466681856h°t° +98824192h*t* —5583872nh%t3
~1431104ht? +79312ht — 280819 )

Ps =— L

— —  _n3(8ht—7)(4ht-3)(8ht-5
o 5109350400 ( ) I )

(469762048h8t8 —1445986304h't’ +1598554112h°t®

—770441216h°t° +161017856h*t* — 7844864h°t°
—250580ht? ~990128ht ~1256893 )

1

P3 = 1577337600

h3 (8ht —5)(4ht - 3)(8ht —7)

(58720256h8t8 —170655744h"t" +177471488h6t°

—82022400h°t° +17057792h*t* —512448n°%3
+50720h%t? + 205629t +167684 )

B = L

—— ____h3(4ht-3)(8ht—7)(8ht—5
T 51003350400 ( It I )

(67108864h8t8 —183500800h"t’ +181403648n5t°

—82051072h°t° +16437248h*t* — 750592h53t°
~173248h%t2 +-3728ht —9823 )

oy
20437401600
(33554432h8t8 —85983232ht’ +82051072h%t° (

By = h3 (8ht —5)(4ht -3)(8ht - 7)

9)
~36339712h°t° + 7204864h*t* —318976h°t3

~68672h%t? + 7496ht —847 )



X = Xy
where tz% Evaluating Egq. (9)
t= Olggﬁl yields the discrete one-step formulas
88838
yn—-2ly g5+35y 3-15y 7
N+g N+ N+g

193fn+17636 fn% +65528 fn+%

+166348 fr. 3+255290 fry, L
h3 n+8 n+2

17694720 | 4457052 fn+g+243904 fn+%

+3572 fn+%+77 frad
y 1-15y g5+24y 5-10y 7+
n+g n+s n+7 N+g

56 fn—797 fn% -12190 %
—67609 . 3-122930 f, 1
h3 n+8 n+2

~ 15482880| _257071 fn+g—142138 fn+%

—2075 fn+%—46 el

Yy 1—10y 5+15y 3—6y 7
n+Z n+§ +Z n+§

145 fn—1412 fn+% +5300 fn+%
—75788 ;- 3-210650 f, . L
h3 n+8 n+2

© 61931520 | -581020 fn+g—341228 fn+%

-4820 fn+%—127 fnel

y §—6y

+8 -3
n+ n+§ y 3 yn+z

8 g ™Mz 8
88 fy—859 fn+%+3854 fn+%
(3 |~11903 fn% —52510 fn4 %

~ 77414400| _327673 fn+g—212726 fn+%

-2989 fn+%—82 fratl

Yy 1-3y 5+3y 3-Y 7
n+> nt+g Ntz Ntg
331fn—3268fn+% +14848fn+%
~41516 f,,.3-71030 fr .1
h3 n+8 n+2

619315200 | 674876 fn+3-568952 .3

—6868 fn+% ~329fn

(10a)

(10b)

(10c)

(10d)

(10e)

at
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Ynt1—3y 743y 3-Y 5
Ntg Ntz g

329 f,—3292 fn% +15112 fpy %
3 —42484 fn+g+82970 fn+% (10f)

619315200 | ~112484 fn+g+702512 fn%

+557108 fn+%+9829 fral

By combining the schemes Eq. (10), the first, second
derivatives of the schemes and write in block form, using
the definition of implicit block method in Eq. (9) to obtain
the block formula describe as follows:

q
p R
h jEOaI,Jynﬂ

q
> di jfn
q -1
=h* 3 g yi +hP Al , (D
pA
J 2 b j e
i=01..,9

A is the power of the derivative of the continuous method
and pis the order of the problem to solve: q=r+s. This

equation is solved, and values for yn ., Ynu1, y,’m,i,

Ynatr Yoy and  yng izo(%jl are obtained as

follows:

1, 1.2
=Y + 5 NYn + 79 N
yn 1=Yn 8 Yn 128 Yn

[ee]

3619903 f+6779886 fn%

—9359135 . % +11774146 fn+g
h3

Fomrrmo | —276129795 f. 1 +6771082 fpr4.2
20437401600 n+5 n+g

-5920898 fn% +679110 fn%

~73886 fna1

1., 1,2,
=Yy +7hyp +=5h
yn+1 Yn il Yn 37 Yn

p
9182944 f1+29158528 fn%
—29652672 fn+%+37540480 fn%
hd 1 5
+ [ TETO0E00 —166866575fn+§+21492096 fn+g

-15108362 fn+%+2150272 fn%

~233706 fngq



y

n+

*+ 10218700800

y
n+

+
817496064 o

+
378470400

y

*+ 2919628800

3
_
yn 3=Yn 3

8

+ 756940800

N

h3

8

h3 -

y Yn+—
n+

3-
4

h3

7 Yntg
8

h3
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!/ 9 "
hyn + 15" ¥n

1650456fn+6407262fn+%
—4690953fn+%+6896610fn+§
—16128015fn+%+3971754fn+g

—2681066fn+%+398358fn+%

~43335fn41

1., .1 "
1= Yn"‘thn"‘ghzyn

41110016fn+175521792fn+%
—96317440fn+%+183713792fn+§
—294165765fn+%+400450304fn+g
—66465328fn+%+10076160fn+%
~1096192 41

25

2
5=Yntg hYn+128h Yh

5253125 f1,+23702750 fn%

0296375 fn+%+25537250 fn%

0295999 fn+% +12920250 fn+g

—8455162 fn+%+1295750 fn% ~141000 fn4q

hYn +* Yn

3553632 f, +16619904f 4
n+g

+18486144 f
n+l ned

4 8
-17330205f ¢ +12920250f g
n

+§ n+§
3 +1295750 f 7

n+Z n+§
~141000f 1,1

—5935680 f

—8455162 f

49 2
hyn + 128 h“y

37701874fn+180838518fn+%
—54639557fn+%+206894170fn+g
—160182975fn+%+104842066fn+g

—57678362fn+%+9423582fn+%

~1020425 f41

* 10218700800

’ 1 n
yn+1:=yn-+hyn+~§h2yn

h3

r

8

173694976 f,+848822272 fn+%
—221380608 fn+% +993525760 fn%
—655505615 fn+%+520617984 fn+g

~237853856 fm% +52953088 fm%

—4546560 fr41

_ ’ 1,2,
ymi —hyn+gh Yn

1624505fn+4124232fn+%
—5225624fn+%+6488192fn+g
h 1 5
+ I —5888310fn+§+3698920fn+§
—2660140fn+%
+369744fn+%—40187fn+1
! ’ 1 "
Y. 1 =hyh+7n2y
n+7
4
465544fn+1880576fn+%
—1469664fn+%+1978624fn+§
h2
+ EEE0 —1816240fn+%ﬁ1145856fn+g

—757103fn+%+114944fn+%
~12504 fn41

' _ ’ 3.2
yn+g—h3’n+§h Yn

h2

* 51609600

4

Yy 1
n+5

h2
*+ 29030400

644949 fp+2957472 fn%
~1355616 fn+%+2835000 fn%
—2532870 fn+% +1595376 fn+§

~1037308 fn+%

+160056 fn+% ~17415fn41

! l "
=hyn +7h2)/n

492992fn+2383872fn+%
—742400fn+%+2564096fn+g
189504Ofn+%A4220608fn+g

—789199fn+%

+122880fn+%e13376fn+1

(12)
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! ! 5 14
y. .5 =hyn +gh2yn Yot

El

5
8

1036064 f, +5842688 f. 1
1994125 f,+9935000 fn% n *g

—1359808 fry4. 1 +3842816 f14-3
—2325000 fn+% +11470000 fn+g n+7 n+

h

2 —h2yr N 37158405, 12391296 fp, 5
h Yn * 29030400 n+5 N+g

| 1 5
+ 92897280| ~6418750 f+ +5103000 .2

—1565662 fr1.3 +284627 fn4.! —
3197468 fp.3 N*2 n*g
4 26656 fr41
+500000 fn% —54375fn41
y" 3
! ! 3 2 ” n+7
Y. 3=Myn+7zh%yn
4 347787 fn+1914354 fn%
167400 fn+850176 fn% 92826 fn% +2158218fn+g
~158112 fn+ 1 41022976 fp4 3 _h2yr h 1 5
P n+y n+g =h“Yh + ge7eg00| 1516320 fn++929718fny>
1
* ga51200| 460080 n+5+518400 fn+§ 1611380 fn+% 191854 . 7
—258085fn+% ~9963 11
+41472 fny ] 4536 fnpq )
8 y 1
N+
! ! 7 2 n 2
yn% =hyn +gh"yn 520064 +2889728fn+%
+31232 fny 1 +4192256 fr4.3
2019731fn+10388784fn+% , ) N+a Ntg
=heYA + rrermonn | 1162240 fny 1 +1181696 fpy 2
~1575056 fn+%+12811736 fn+g Yn * 12515200 n+o™ N*g
h2 1 5 +853927 fry4.3 4124928 fn ./
F ey | 4826010 iy L +7068544 f,,. S 4 )
66355200 5 8 13696 1
—2155492 fn+%
7_ 14
+589176 fmJrg 57281fn41 yn +g
/ v 1042625 fn+5753750 fp4 L
Yn+1 =hyn +hyn n N*g
1 3
44560384 f,+232128512 fpp L +932548 -7 +7958750 fn+ 2
2 h _ 1 5
12 |-3135897 fn. 1 +295567360 fn+g (13) =""Yn + 59030a00| 100000 fn>+4273250 fny-3
TR L _ 3 7
1277337600| 97700625 1,4 1 +177340416 fn..5 1797484 1n7-+286250n+ o
2 8 3062541
~35477288 fn+%+33161216 fn%
yN 3
” n+=
yn+% 4
173232 f,+964224 f4 L
1070017 fn+4467094 f, L 8
8 177764 1 11392768 f 43
—4604594fn+%+5595358fn+g ) h 4 . 8 5
=h“yn + sgaarnn| 155520 fp4+ +1150848 fr 4.2
=h2yp, +W2)400 5033120 1.1 +3146338 1.5 4838400 2 8
2 8 26533 143 +31104 !
~1859948 fn4-3+312874 fr..7 4 8
4 8 -3888fn41

-33953 fn41
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n+

oo

1046689 f+5716438 fn+é
+340942 fn+%+7601566 fn+§

=h2yh 4o 0| 384160f, L +5152564fn+g

29030400 >
+3085588 fn+%+1562218 fn%

~57281fn41

Yn+1
506368 fry+3014656 fn%

—475136 fn+%+5373952 fn%

h (14)

L2,
=h"yn + 12515000

—2324480 fn+% +5373952 fn+g

~759503 fn+% +3014656 fn+%
+506368 fp41

3. Analysis of the Method

In this section, the analysis of the basic properties of the
method was carried out as follows.

3.1. Order and Error Constant of the Method

The formula in Eq. (10f) in a conventional linear
multistep method can be expressed as:

7 8

3 "
2 ajy s=h"> Bjy
P (R = n+
=5 5 '8

(15)

. j
=0 g '8

Following Ref. [1], the local truncation error associated
with Eq. (15) was defined by the difference operator

Lj {y(x):h}

8

2

J=0

. . (16)
{a Y0+ =1y, +§h)}

8 8
where y(x) is assumed to have continuous derivatives of

a sufficiently high order. Therefore expanding (10f) in
Taylor series about the point x to obtain the expression

Li{y(x):h}

8
:Coy(x)+Clhy'(x)+C2h2y”(x)+...
+Cp+2hp+2y(p+2) (x)

am

+Cp+3hp+3y(p+3)(x)

The term C 3 is called the error constant and implies
that the local truncation error is given by:

trek = Cprah Py (P (x Y0P (19)

since Cg=C;=..=Cp,»=0,C,,3#0. see Ref. [19];
then the method has ordered p=9 with error constant

19
Cp+3 = :
11083077207982080

3.2. Definition: Zero Stability of the Method

According to Ref. [2] a block method is zero stable
provided the roots zj, j=1(1)k of the first characteristic

polynomial p(r) specified as

) :de{ §OA<J>zk—i}o, AO_1 (o)
J:

satisfies |zj|sl, and for those roots with |zj|=1, the

multiplicity must not exceed 2. By definition (3.2) block
Eq. (11) is zero stable since the roots of the characteristic

polynomial satisfy |z|<1 and the root |z|=1 has
multiplicity not exceeding the order of the differential
equation. Moreover, as h“—)O,p(Z):Zr‘”(i—l)”,
where u is the order of the differential equation, for the
block method, r=24,and =3

p(2)=2%(2-1)° =0
Implies that
1=0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1

Hence, the method is Zero stable.

3.3. Consistency of the Method

From Eq. (10f), the first and second characteristics
polynomials of the method are given by

7 3 5
p(r)= r—3ré +3r%1 —ré

or)= 320 320 g, w12 Y
619315200 619315200 619315200

3
| 484 3 , 82970 r%
619315200 619315200
5 3
112484 g 702512 3
619315200 619315200
7
557108 g 9829
619315200 619315200
This implies that the method presented in this report is

consistent since it satisfies the following conditions:
i) The order of the method is p=9>1 which is

obvious.
i) For the method oy =1, a7 =-3, a3 =-3, and
8 4
ag = -1 thus

8
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T8 5
iii) If p(r)=r—3r8 +3r4 —r8and

21 . 9 : 5 3
"(r)=1-"r84+>r4-_"r8
8 4 8
it follows from here that (1) =0= p'(1) shows that the

condition (iii) is satisfied as well
iv) Note that

17 9 19
p"’(r):_@r 8 +§r 4_@r 8
512 64 512

1
r=1=p"(l)=——=3lo().
P =g, =380

For the principal root is observed that the last condition
above is satisfied. Hence the method is consistent.

3.4. Convergence of the Method

According to Ref. [20], the necessary and sufficient
condition for a numerical method to be convergent is to be
consistent and Zero stable. Thus since it has been
successfully shown from the above condition, it could be
seen that method is convergent.

3.5. Region of Absolute Stability of the
Method.

The boundary locus method was adopted by considering
the stability polynomial written in general form:

n[r,ﬁj=p<r>—ﬁa<r>=o

(20)

thz/l and ﬂ:g—f is assumed constant. The stability
y

polynomial of the formula (10f) becomes:

7 3 5

r—3r8 +3r4 —r8

1
329 3292 rg
619315200 619315200
1 3
15112 2 42484 o
+ re — r
619315200 619315200 (21)
_ 1 5
B L 2. -

+ re— r
619315200 619315200

3
702512
+ r
619315200
9829
—r
619315200

7
557108 ¢
+ r
619315200

where,

and
1 1
329 3292 s 15112 5
o(r)= - ré + r
619315200 619315200 619315200
3 1 5
42484 o 82970 112484 o
619315200 619315200 619315200
3 7
702512 557108 o 9829
+ r4+ ré + r
619315200 619315200 619315200
From Eq. (20),
- r
ho D), (22)
a(r)

Substituting p(r) and o(r) into Eq. (21), evaluate,
and equate the imaginary part to zero leads to

3290059—1031525005%6
+803737cos%9—513787c05§9
619315200 +259050c03%9—98025c05§0

+25975005%074279cos%9

— +558525
(o) .
6467482 cos 0 + 608557930160 cos s 17
1 3
+17408233776 cos Z 6 + 26570306064 cos g o
1 5
—19677416680 cos E 6 +11303528240 cos g 17
3 7
—2908674480 cos Z 6+ 301862928 g 0
+825569922510
(23)
T T ] Taoesy
A T 3008
- \
N, T20es
/'JI \‘
o \T 100
<':.. — L A — S S S 0 feH)
N 3567 30e7 257 2067 13e7 1067 5.0ed 4
\'\'\. [T 106
. /
Ve 2008
. P
— o + -3.0e-8
— -Ade-8

Figure 1. Region of absolute stability of the proposed method

4. Numerical Experiments

The method was utilized to solve specific initial value
problems of third-order ordinary differential equations to
verify its accuracy, workability, and applicability. The
following notations are used to represent the current findings:

XVAL: Value of the independent variable where a
numerical value is taken.
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ERC: Exact result at X\VAL 4.2. Problem 2
NRC: Numerical result at XVAL ) )
ERR: Error in proposed method at XVVAL Consider the linear problem:

y"=2y"+3y'-10y + 34xe~2X

—16e2X _10x2 + 6x+ 34,
0<x<1 y(0)=3y(0)=0,y"(0)=0

4.1. Problem 1

Consider a non linear third order ODE problem:

2
w _ 1+2sin“(y) T
! ocos?(y) 0=x=7 Exact solution: y(x) = x%e 2% —2x—x2 +3.
= "0)=1 v"(0) = The proposed method was applied to this example and
Y(©)=0,y(O) =1 y(0)=0 the results obtained are compared with that of Ref. [21] in

whose exact solution is given by y(x) =arcsin(x). The  Table 2. The result is as shown in Table 2.

method was used_ to solve the pmblem’ and the results Table 2. Comparison of results obtained with the proposed method
were compared with Ref. [21] as shown in Table 1. and that of Ref. [21] on problem 2

ERR ERR in [21]:

Table 1. Comparison of results obtained with the proposed method XVAL ERC NRC P=9 K=1 P =9 K= 3

and that of Ref. [21] on problem 1 01 | 299818730 | 299818730 | 3.8646E-19 | 2.5934E_13

ERR ERR in [21] - —

XVAL ERC NRC P=9 K=1 P=9K=3 0.2 2.98681280 | 2.98681280 | 1.6071E-18 4.3611E-11
(Single Step) | (Three Steps) 03 | 295939304 | 2.95039304 | 3.7550E-18 | 2.9672E-11

0.1 0.10016742 | 0.10016742 5.5511E-17 0.0000+00 0.4 2.91189263 | 2.91189263 | 6.9813E-18 9.9812E-11
0.2 0.20135792 | 0.20135792 8.3266E-17 5.5511E-17 05 284196986 | 2.84196986 | 1.1497E-17 2.3423E-10
03 | 0.30469265 | 0.30469265 | 5.5511E-17 | 1.1102E716 0.6 | 2.74842991 | 2.74842991 | 1.7577E-17 | 4.5508E-10

0.4 0.41151684 | 0.41151684 | 2.7755E-16 3.3306E-16

05 052359877 | 052359877 2 2204E-16 4.4408E—16 0.7 2.63083251 | 2.63083251 | 2.5561E-17 7.9121E-10

0.6 0.64350110 | 0.64350110 | 2.2204E-16 | 4.4408E—16 0.8 248921377 | 248921377 | 3.5862E-17 | 1.2750E—09
0.7 | 0.77539749 | 0.77539749 | 6.6613E-16 | 5.5511E-16 09 | 232389209 | 2.32389209 | 4.8968E-17 | 1.9452E-09
08 | 092729521 | 0.92729521 | 1.6653E-15 | 8.8817E-16 10 | 213533528 | 2.13533528 | 6.5444E-17 | 2.8494E—08
3.0 ———
0.8
_ 2.8
0.6
= 2.6
0.4 =
[ 2.4
0.2
0.0/ 22
0.0 T 02 04 06 0.8
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Figure 2. curve of problem 1 as compared with the exact solution
Figure 4. Solution curve of problem as compared with the exact solution
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Figure 3. Behaviours of absolute errors obtained by the proposed Iteration numbers

method on problem Figure 5. Nature of absolute errors obtained by the proposed method on

problem 2
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4.3. Problem 3

Consider the problem:
y"=-y, 0<x<1l, h=0.1
y(0)=1y'(0)=-1,y"(0) =1

Exact solution: y(x) =e™*. The proposed method was

applied to this example and the results obtained are
compared with that of Ref. [6] in Table 3.

Table 3. Comparison of results obtained with the proposed method
and that of Ref. [6] on problem 3

4.4. Problem 4.
Consider the problem:
y"=eX, 0<x<1, h=0.1
y(0)=3,y'(0)=1y"(0)=5

Exact solution: y(x)=2+ 2x? +e*. The proposed

method was applied to this example and the results
obtained are compared with that of Ref. [6] in Table 4.

Table 4. Comparison of results obtained with the proposed method
and that of [6] on problem 4

ERR ERR in [6]:
XVAL |  ERC NRC | oo k=1 | PpogK=5
0.1 0.90483741 | 0.90483741 | 2.8160E-24 0.0000+00
0.2 0.81873075 | 0.81873075 1.1025E-23 2.7756E—14
0.3 0.74081822 | 0.74081822 | 2.4162E-23 1.5838E—12
0.4 0.67032004 | 0.67032004 | 4.1797E-23 2.7879E—-11
0.5 0.60653065 | 0.60653065 | 6.3522E-23 2.9477E-11
0.6 0.54881163 | 0.54881163 | 8.8946E-23 8.5048E—-11
0.7 0.49658530 | 0.49658530 | 1.1768E-22 8.0357E-11
0.8 0.44932896 | 0.44932896 1.4936E-22 1.6601E—10
0.9 0.40656965 | 0.40656965 | 1.8358E-22 1.1176E-10
1.0 0.36787944 | 0.36787944 | 2.1997E-22 1.4871E-10
10 ;
09:
0.8}
0T
0.6
0.5
0.4
0.0 02 04 06 08 1.0

Figure 6. Solution curve of problem as compared with the exact solution
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Figure 7. Nature of absolute errors obtained by the proposed method on
problem 3

XVAL ERC NRC b =E§,RKm= 1 Eszg Ez[sg
0.1 3.12517091 | 3.12517091 3.0834E-24 0.0000E+00
0.2 3.30140275 | 3.30140275 1.2625E-23 2.8422E—-13
0.3 3.52985880 | 3.52985880 2.9242E23 1.6729E-12
0.4 3.81182469 | 3.81182469 5.3616E-23 2.9983E—-11
0.5 4.14872127 | 4.14872127 8.6502E-23 3.1673E—-11
0.6 454211880 | 4.54211880 1.2873E-22 9.1899E—-11
0.7 4.99375270 | 4.99375270 1.8122E-22 8.9531E-11
0.8 5.50554092 | 5.50554092 2.4500E-22 1.9168E—10
0.9 6.07960311 | 6.07960311 3.2119E-22 2.1110E-10
1.0 6.71828182 | 6.71828182 4.1103E-22 4.9398E-10
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Figure 8. Solution curve of problem as compared with the exact solution
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Figure 9. Nature of absolute errors obtained by the proposed method on
problem 4
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5. Conclusion

This work developed a one-step collocation approach
with seven off-steps to directly solve initial value
problems of general third-order ODEs. A step size with
seven off-step locations is chosen for improved technique
performance within the stability interval. In fact, when the
new approach's results were compared to the block
method proposed by Allogmany and Ismail [20], the new
method was more accurate.
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