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1. Introduction

During the last century, splines theory has received
considerable attention. Lacunary interpolation was
initiated in 1957 [1]. Several researchers have studied the
use of splines to solve such interpolation problems
[2,3,4,5]. All of these methods are global and require the
solution of a large system of equations. The most
appropriate  method solving lacunary interpolation
problems using piecewise polynomials with certain
continuity properties.

Spline functions are a good tool for the numerical
approximation of functions on the one hand and they also
suggest new, challenging and rewarding problems on the
other. Piecewise linear functions, as well as step functions,
have been an important theoretical and practical tools for
approximation of such functions. Lacunary interpolation
by spline appears whenever observation gives scattered or
irregular information about a function and it's derivatives.
Also, the data in the problem of lacunary interpolation are
values of the functions and of it's derivatives but without
hermite condition in which consecutive derivatives are
used at each nodes.

2. Construction

Let S(x) € S®, ¢ denote the class of sixtic splines S(x)
on [0,1] such that
e S(x)eC°[0, 1]
e S(x) is a polynomial of degree six on each
subinterval

[X v+1

, },Oﬁvsn—l (1)
n n

It can be verified that if P(x) is a sixtic on [0, 1] then:

P(x)= p(1)Co (x)+ P(2)Cy(x)
+p'(1)C, (x)+ p"(2)C3 (x)+ p"(1)C4 (x)
+p"(2)Cs (x)+ p') (1)Cg (x)

%(x)=%(x6—4x5+5x4—6x+4)

A (x)= %( x® +4x> —5x +6x)
%(x):%(x6—4x5+5x4—2x)

Ag(x)= %( X8 +4x° —5x* + 4x? - 2x)

A (%) :Tio(_lz)(G +40x° - 65x* + 40x° - 6x)
As (x) = i(—nxﬁ +40x° - 35x* + x|

Ae (X) = ;0(7x ~20x° +15x" - 2x|

For later references we have:

Po(0)=1A(0)=0,A(0)=0,A(0) =
As(0)=0,A5(0)=0,A5(0)=
(1)=0 (1) Ao (1)=0,A5(1) =
)= As(l) (1)=
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and

and

A4 (0) =30, A (0) = -30, A, (0) = 30, A1) (0) = -15,
Al (0= 4 0=
A @=0.4"1)=0.4" @)=04" 1m)=0
A =0 m=0a"1)=1

and

A (0) = -120, A (0) =120, A25)(0):—120,A§5)(o):eo
A£5)(O)=20A5 (0)=20,A) (0)=-

A (1) =60, A®) (1) =60, A (1) = 60, AL®) (1) = =30,
AY @) =7 A 1) =-13. A7 (1) -

Further, a sixtic P(x) on [1, 2] can be written as:
P(x) = P(L)Co(x)+P(2)Cy(x)

+P'(1)C2 (X)+p"(2)C5(x)+ p"(1)C4 (x)
#0"(2)C5 () + ¥ (1)Cs (x)

Where:
6 5 4
1[—x" +8x~ —25x
Co=7 4 = Ao (2-x)
4| +40%3 — 40%° + 26x — 4
6 5 4
1| X~ —8x”+25x
Ci(x)=7 3 ) = A (2-x)
4| —40%3 + 40x° — 26X +8
6 5 4
1| —Xx" +8x” —25x
Co(x)== s ) =—A(2-x)
4| +40x3 - 40%% +30x 12

6 5 4

1| X +8x” —25x

Cy(x)== =Ag(2-x (3)
) 8{+40x3—36x2+18x—4] (=%

1 [ 11x8 —92x° + 295x*
Ci(X)=7— =—As(2-x)

240 _440x® + 280x% — 26x — 28
9x® — 68x° + 205x*

Cs (x) = — ]=—A4<z—x>

240{ _320%3 + 280x% —134x + 28

1 7x8 —64x° + 235x*

Co (X) = ]:Ae(Z—X)

480( _440x° + 440%° — 222% + 44

It is easy to verify that a sixtic Q(x) on [0, 1] can be
expressed in the following form:

Q(x)=a(0)Bo (x)+q(1) By (x)
+q'(1)By () + () By(x)+q ) (1B (x) @
5><> Bs (x)+4>) (1) Bg (x)
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1
By (¥)=5
Bs (x)= 7;0( —x® +6x° —15x* +13x° - 3x)

(2 x4 —3x +2x)

Bs (¥) :%(x6 -15x* +20<° - 6x)

for later references we have

B (0)=—1 B/ (0) =87 (0) =5,
By (0) =184 (0) = 5.
-1 __1

'(1)=
(1) =0, 55' (1)=0.85'(1)=0

By" (0)=3,B," (0)=-3,B," (0) =3, (0) =3
B/ (0) =586 (0)= 0. B (0)=5

By” (1) =38 (1) =-3.8;" (1)=3,85" (1

By (1) =5 B ()= 150 B (0=,

B ") (0)=0,8*)(0)=0,8,*) (0) 0

8% (0)=0,8,* (0)=1

) (0) - 5B Y (0)- 5

8" (1)=0.8{*) (1) =0.8,") (1) = 0.8 (1) =0
B (1) =185 (1)=1.85*) (1) =0

Bs'”) (0)=1,B5*) (0) = 0,B*) (1) = 0,B®) (1) =1

Also a sixtic Q(x) on [1, 2] can be written as:

Q(x)=a@Dy (x)+a(2)Dy (x)
+q'M)D, (x)+9"(Q)D3 () +q WD, (x) (6
+q® D5 (x)+9®) (2)D5 ()

Where:
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x® =3¢ +9x-2) = By (2 )

NG N = r\3|P N -

/—\/_\

- +6x7 ~9x+4) = By (2-X)

3 6x% +11x-6) = B, (2 x)

—

X3 —4x% +5x— 2) B3 (2-x) (7

4 3
D4(x>=i POy (2-x)
+30x% —29x+10

1 x84+ 12x° —45x4
D5 (X)=———~
720| 4+60x3 —54x + 28

48

j=—56(2—x)

D (x) 1 x6 —6x5 +15x4
6 = SAin
720| _27x3 + 42x% —39x + 14

JZ—Bs(Z—X)

3. The Approximation of the Spline
Functions

Descriptions of the method: Let (S,, C°) be the class of
spline functions with respect to the set of knots x;. The
spline functions will denoted by Sj(x), where i =0, 1,..., n
We shall prove the following:

Theorem 1 (Existence and Uniqueness)

For every odd integer n and for every set of 5n+9/2 real
numbers

fo, f1oees s
4) (4
ORIC

fl" f3,,..., fr;, f()", fzﬂl-.-; fn"_]_;
e 815 1

there exists a unique S(x) € S®, ¢ such that:

S(X): fV! VZO,]., "1[n__1j
n 2

2v+1 n-1

g’ =11, v=01...,| —

( n j 2v+l ( 2 j

ov n-1

Sm f , V—O,l, o T

&) )

S(4)(2V+1J: f(4)2v+1’ v=01..., n__lj
n 2

_Sm(o): fom’ S’"(l): fnm

Let feC°[0,1] and n an odd integer. then the unique
sixtic spline S,(x) satisfying conditions of Theorem 3.1,
with f, = f(v/n), v=0,1,...,n

fovi1 = f'[2v+1j,V:0,1 ,,,,, n—_l;
n
-1
fo, = f' v=0,1,.. —,
2v ( j 2 ®)
£4) =f(4)(—2"+1j....,—“_1;
2v+1 n 2

and S'(0)=fg,S8'(1)=f,

we have:

S@h&tw(f(ﬁ);h)
131

21
£ pbt “ f (6)“ where r = 4,5
100

Hs(t) (x)- £(t) (X)H
sﬂh“w(f(ﬁ);h)
19

21
L= pbt “ f (6)“ wherer =0,1,2,3
100

Proof of Theorem 1

For a given S(x) & S® neseth=n" M, = =S5O (vh+), v =
0,1,.....n-1, Nv = §® (vh)v-Ol....n Since, S is
linear in each internal (vh, (v+1)h), it is completely

determined by the (2n) constants {MV}C;é and {NV}Czl.

Also, if S(x) satisfies the requirements of Theorem 1 that
for 2vh <x < (2v+1)h, v=0,1,..., n-1/2 , it must have the
following form:

5(x )—fzv%(x 2vh) f2v+lA1[X_Zth

h

, X—2vh , X—2vh
+hfay1 A (T) +h?f3,Aq (TJ

X—2vh X—2vh
+h3M2vA4( h )+h3N2v+1A5( h j
4.(4 X—2vh
+h fz(v)As( k )

and for 2v+1)h < x < (2v+2)h, v=0,1,....,
the form:

9

n-3/2, S(x) has

2v+2h—x}

$(x)- fzmpo[ s

+ f2v+2'Al[ ;
]+h2f2’\,+2A3[(2X_2)h_XJ

h

(2v-2)h—x
h

_n3m ovi1Ay (%J

e LR N (il

_hf2’v+1A2 (

(10)
We shall show that it is possible to determine the (2n)
é and {N
S(x) given by Eq. 9 and 10 will also satisfy (5) in
Theorem 1 and S' (x), S"(x) and S* will be continuous on
[0,1]. S(x) is continuous because of the interpolating
condition Eq. 8 in Theorem 1, S'(x) and S“(x) are
continuous on [0,1] except at the points (2vh) and (2v+1)h,
respectively,v=0,1,...,n-1/2.
From Egq. 10 we see that Eq. 8 in Theorem 1 is
equivalent to:

parameters {Mv}c; } _y» such that the function

6fy— 61, +6hf;

Mq+ Ny = — 4 5 (11)
O —3h2f0'+h7f(§4)+%f(§5)
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60 f,_1 — 60 f, + 60hf;

11

-3
7M1 +13N, =h
=175 30n2f, 4 +?h4fr$4)—h5 19

(12)
Simple calculations show that S"((2v+2)h-) =
S"((2v+2)h+) and S®((2v+2)h+) are equivalent to:
5N2v+2 +17M2v+1

60 ,
= ?{_ fovaz + Tova1 —fay,a ) (13)

24( ., 1., h (a4
_r( f2v+3 + Z f2v+2 j + E f2(v4)—3
h? h3
?(M2v+2 + N2v+3)+%(7N2v+2 +1M 2v+1)
=—fovi1— fovi2 +2f5y3 +2Nf5 5+ (14)
h? h (

+7(2 f2”v+3 - f2”v+2)_%

101"

2v+

4
2 +11f2(v21)

Similarly $"((2v+1)h—)=S"((2V +1)h+) and

s®) (v+1)h+)=s®) (2v+1)h-), v=01,....n-3/2
are equivalent to:

17My, +5Ny, 4

60 ,
= F(_ fou+ foyn + hf2v+l) (15)

24 " 1 " h 4
_F( ity f2vj+§ fz(vll

1 1
h—2(7M2V +20sz+2)+h—2(13N2V+1 +20M2V+1)

60 60 , ,
= h_5( f2v + f2v+1 -2 f2v+2 ) +h_4(2 f2v+2 + f2v+1) (16)

30 ” y 1 4 4
(2t ) 1) +1014,),

Thus, the theorem will be established if we show that
the system of linear Eq. 12-16 has a unique solution. This
end will be achieved by showing that the homogeneous
system corresponding to Eq. 12-16 has only zero solution.

The following is the homogeneous system of equations
forv=0,1,..., n-3/2:

(20Nyy, 0 +7Myy, ) +(20M g1 +13Nyy,1) =0 (17)

17M,, +5Ny,4 =0 (18)

(20M3y; 5 +11Ngy42) +(20Ny 3 +7Mpy1) =0 (19)

7N2V+3 +13M v+ = 0 (20)
M0+N1:0 (21)
M4 +13N, =0 (22)

Form Eq. 19 and 20 we have forv =0, 1,..., n-3/2:
17M,_3+5N, , =0
and
1IN,_3 +20M, 3 +7M,_» + 20N, =0 (23)

Putting the values and M,; = -13/7 N, from Eq. 19 in 20
we have:

11N,1_1+7|\/|,1_2—%Nn =0 (24)

Also, from Eq. 14 and 20 we have:
20N, _; +20M, _, +%Nn_2 =0 (25)

and Mg = -N; from Eq. 21.

Using Eqg. 19 we obtain 17M,3+5N,, and using Eq. 21
with 25 and 24 we have M,.3 = N2 = My = N3 = 0.
Also obtain the system:

186N2V+1 +340N2V+2 +340M2V+1 =0

n-2
120N,, 5 +143Nyy,, +9IMy, 4 =0 forv=0,1,...,——
40800N,, 3 +17680N,, ., —16926N,, .1 =0

By the same manner we get Mg = M; = ... =M,; =0

and N;=N,= N3 = ... = N, = 0, to solution of the
homogeneous system for n = 4p and n = 4p+2.
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