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Abstract This paper surveys and reviews paper of spline degree seven inhomogeneous and optimized the best
errors bound by spline (0,2, 5; 0, 3, 6) case. It has been shown that the existence, uniqueness and convergence
analysis with minimizing the error bounds of deficient seventh spline interpolated.

Keywords: interpolation spline function, boundary condition, optimal error bounds

1. Introduction

Interpolation polynomial occurs naturally in many
fields of physics and mathematical statistics. They also
arise as representation formulas for the interpolating of
data.

This theory has developed into an interesting branch of
applicable mathematics to minimize the function, which
contains a wealth of new idea for inspiration
inhomogeneous lacunary interpolation by higher order
spline function. A better accuracy in the interpolation is
especially relevant since the spline function is fully
expressed in terms of boundary quantities. This type of
problem arises in the mathematical modeling of
inhomogeneous lacunary interpolations concerning
[1,4,10,11]. Spline function have been used for this
purpose in minimize errors estimation [3,5,6]. Various
types of splines, such as quadratic [2], quinitics [8],sixth
[7] and ninth [9] have been used to interpolate the
polynomial and solve these different kinds of problems. In
[4] used six degree spline function for the(0, 2; 0, 1, 4)
inhomogeneous lacunarcunary case but in the present
paper we use seven degree spline for the (0, 2, 5; 0, 3, 6)
inhomogeneous lacunary type that means our model are
differences as follows:

Form the Model, form the boundary conditions, form
the Polynomials which we obtained, and all results from
the Theorems in the next sections.

2. Splines Theory

In these extended set of polynomials, we found new
polynomial ~ with  better  approximation theoretic
performances as seventh splines.

S(x) =f,,v=01..n

2v+1

S"(—) = oy, S"( )= T (1

(5)(2V) 5 S(6>(2V+1) £.6)

2v+1

where v=o,1,2,....,(”7‘1), S'(0)=f§, S'@) = f/

We may all it (0,2, 5; 0, 3, 6) interpolation, in the next
communication we shall return to same other problems of
this nature: It can be verified that if P(x) is seventh on [0,

1] then

P(x) = P(0)B, (x) + P()By(x)
+P"(0)B, (x) + P"(1)B3(x)

+PW(0)B, (x)+PW (1)Bs (x)
+P® (0)Bg(x)+ PO (1)B, (x)

(2)

Where
Bp(x) =1-x,
B (X) =X,

B () =5 (X +32), By() = < (x-x)

B4 (X) :i(111X—175x3 +70x* —7x8 +x7),

(x)_ (99x ~105x3 +7x® )
Bs(x):—(27x—35x +14x° —7x8 +x7),
B, (X) = ( ~895x +35x° — 7x8 +3x”)

Further, a seventh P(X) on [1, 2] can be written as
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Q(X) =Q(2)By(2-x)+Q(1)By(2-x)

P"(0) = -35P(0) + 35P(1) — P 0
+Q(2)B, (2~ %)+ Q"(1)By(2 X) (0)=-35P(0)+35P() ©

QOB Q@B ) SPO-FPO- 1P”<1)
(5) (6)
-Q™(2)Bs(2-x)+Q™ (1)B7(2-x) +_P<5>(0) _T_po)y
It is easy to verify that a seventh P(X) can be 64 2880

expressed in the following form:

P(x) = P(0) A, (x) + P() A (X)

P() (0) = 140P(0) - 140P(1)+@P(0)

+P(0) Ay (x) + P’ Ay (¥) %P )+ _p (0)__p Q)
+P"(0) Ay (X) + P"(1) A5 (X) o o
+PO (0) A5 (x) + PO @) A (x) 16P ©) 20P @

where 169

p(4) (1) =-140P(0) +140P(1) ——P’(0)

(x) :1(6—35x3 +35x% —7x8 + x7),
"o 6 P o- P”(O) + P’"(l)
1 5.3 4 56 7 2
Al(x)zg(35x =35x" +7x° —x") P(5)(O) P(G)(l)
16 720
X) = = (48x ~199C + 181x* —35x° +5x7),
5 525
418 PO ) = ~420P(0) + 420P(1) - =P'(0)
Ag(x) :E(—27x3 +33x4—7x8 + x7) 315 35,0 P © + P”’(1)
Ay(x)= i(24x2 —59x3 +41x* —7x8 + x7) 2
- 48 ’

> pO)(0) + p<6) 1
A5(X)=i(11X3—17x4+7x6—x7) 50 OF @)
o0 P(®) (0) = ~840P(0) +840P(1) - 525P'(0)
3 5
As (X )—1920 (5x% ~15x* +16x° — 7x® + x”), —315P'(1)—105P"(0)+§pm(1)

Aq (x )—17—( ~7x3 +14x* —11x° +5x7) 8 (5)(0) (6)(1)

and a seventh Q(x) on [1, 2] can be expressed as Similarly using (5) and (6), we have

Q) = Q@) A (2— )+ QAR N 2
QAR+ A2 O=TeE-TR0 @
+ Q@) A (2~ + Q"W A (2-X)

ZQ+Q @+ Q0
+Q¥2)A2-x)+Q® M)A, (2-x)

) ) ) (5)( 2)- (6)( 1)
Also the following relations are obtained: 9 2880
Po(2-x) = A (), A(2-X) = Ay (X) ”
P20 =00, KR-0=RM Q(2) =302 -3~ Q@)
A4(2_X) = A4(X)! AS(Z_ X) = _AS(X) _gQr(l) Q (2) Pnr(l)
As (2-x) =—A(x), A7 (2—x) = A7 (X) E:;L
Using (4) and (6), we have +aQ(S) (2)+ 2880 Q(G)( D
P =7P0) TP+ T PO Q" (1) =~140Q(2) +140Q) - 27Q'?)
+§P 'a)+= P"(0)+ P’”(l) 11

——Q(l)——Q (2)+ Q "@

+%P(5) ©0)- 2880 (6)() Q(S) )+ Q(S) 1)

47

(7

)
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Q™ (2) =140Q(2) ~140Q(1) + Q(Z)

ﬁo'(l)ﬂQ"(z)——Q"'(l)
Q(S) 2 +-—=Q® ()

Q®) (1) = 420Q(2) - 420Q() +75Q'(2)

15Q'(1)+@Q"(2)—§Q"'(1)

Q<5><2) Q(6)(1)
Q®)(2) = -840Q(2) +840Q(1) -525Q'(2)
~315Q'(1) ~105Q"(2) +§Q”’(l)
21 6) oy 11 (6)

A Q™ (2) 5 4Q 0]

Theorem 1 :( Existence and Uniqueness)

For every odd integer n and for every set of n+9 real numbers

1 P 10

f01 fj_v"'y fn ) fl”l 3“1'-' 2 21

f1(4), f3(4),__,

f.(4) | there exists a unique S(x) e 5(6)&7

denotes the class of all splines of degree <7 which belongs

to CG[O,l] and n is the number of knots satisfies all
condition in (1).
Proof of theorem 1:

For a given S(x)eS®, ; 5(x)es®, ; set h=n™,
M= S@wh+) , v = 01,..n-1, Nv= s@wh-) ,
v=0,1,....,n. Since S(B)(x) is linear in each internal
(vh, (v+Dh ), it is completely determined by the (2n)
constants {M,})_g and {N,}_; . Also if S(x) satisfies the
requirements of Theorem 1 that for 2vh<x < (2v+1)h,

v=0,12,...., (n_—l) , it must have the following form:
S0 = By (20 + TayuaB(C 2
2 1,8, (=20 -1 15,8, 2
(9)

+h4M2vB4(X 2Vh)+h4N2v+1Bs(X 2Vh)

_pS 2(\?1186()( 2Vh)+h6f(6) (x 2vh)
and for (2v+1)h <x <(2v+2)h , v=0,1,...., (@),
S(x) has the form:

S00= foa By 22 1y 8, ALY
+hzfzuv+2|32(2v+2h X)- hsfz"\'/+133(zv+ﬁh_x) (10)
+h4N2v+2B4(2V+2h_x)+h4'\/|2v+135(%)
_h5¢ 2(31186(2v+§h7x)+h6f2($+287(2v+2h7x)

We shall show that it is possible to determine the (2n)
parameters {M,})_5 and{N,}/_;, such that the function
S(x) given by (1) and (9) will also satisfy (2) in Theorem 1,
and S"(x), S"(x), s® (x) and 5(6)(x) will be continuous
on[0,1]. S(x)is continuous because of the interpolating
condition (1) in Theorem 1, S'(x) and s@ (x) are
continuous on [0, 1] except at the points (2vh)and 2v+1ih,

n-1

respectively, v=0,1,2,....,
From (10) we see that (1) in Theorem 1 is equivalent to:

37Mg +33N;

1
=——_{10080f, —10080 f,
Tt ¢ 0 L (11)

+10080hf; —5040h? f§ —1680h° f;"
~162 h° £, ~31n8 1 (0}
169M,_; +181N,
= %4{10080 f,_1—10080f; (12)
~5040h%f —30h%f," ; +3360n°f,"
+258 ho£,(®) +53n0 £ (&)}

and taking the second, third, fifth and sixth order
derivatives respectively of (9) and (10), and also satisfies

S"(2v+2h-)=S"(2v+2h+),
S$"(2v+2h-) = S"(2v+2h+),
s® (2v+2n-) =s® (2v+2h+)

and S© (2v+2h-) = s® (2v+2h+) are equivalent to:

_f(5)

6
- 2V+1+—f( )y (1)

6
Noyi —My, = ( fz(\,J)rl

Moy = Noyi1 + Noyyo —May g

14
:_( (6) f(5) __f(5) f(6)) (14)
2h 2v+1 h2 2v+2 h2 2v+l T h 2v
h3 h3
(37M 2y +33N3y49) + (181N2v+2 +169Mpy )
h 1
f2v+2 5 f2v+1 " fay _F favi (15)
h2 , hz h2 h2
+— f2v f2v+l +— f2v+l +— f2v+2

5
+43h (5) +9h G 53h° O 31h £ 6)
1680 2v+2 10080 2"

560 2V+l 10080 2V+1

Thus, the theorem will be established if we show that
the system of linear equations (11)-(15) has a unique
solution. This end will be achieved by showing that the
homogeneous system corresponding to (11)-(15) has only
zero solution.

The following is the homogeneous system of equations

n-3

for v=0,12,....,
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37Mg +33N; =0
169M,,_; +18IN, =0
Moy, =0

Npyig — (16)

Moy —=Noys1 +Noyp Moy =0
111M2V +99N2V+1 +181sz+2 +169M2\I+1 =0

Putting the values M,_; = —% N, and from (16), we

. n-3

have the following , for v=0,1, ZT
Nn—l_Mn—Z =O (17)

111M n-3 +99Nn_2 +181Nn_2 +169M n-1= 0

3

2 Npa == Mn-p

Form (16) we have Mg :—g N, and also from (17),

we obtain
Mn—3 = Nn—2 = Mn—2 = Nn—l =0

By the same manner we get My = M; = ... = M, ; =0,
and N;=N,= N3 =... = N,=0, see (Saxena and Joshi, (1980)
and Faraidun (2010)), to solution of the homogeneous
system for n=4p and n=4p+2. This completes the proof of
the Theorem 1.

3. Convergence Analysis

In this section, we apply the spline function
interpolation for finding the optimal error bound.

let f eC7[0,1] , N any odd
1 then for S, (x) =S, (f,x) of theorem 1, we

Lemma 1: integer

andh=n
have

|sa@v+in) - @) < %heeoay(vh), |6o] <1. (18)

and

70

50 2vi) - @it <= h® @, (2h), where v:O,l,Z,...,n?_l (19)

Where
@y (vh) = Max{i fDx) - f m(y)‘ [ x=y]<vh,vx,ye[0,1]}-
Proof: Since S,(x)=S,(f,x) is seven degree in
2vh <x < (2v+21)h, we obtain from (7)
h3s(2vh) = —35 f,, +35fy, g —
%hS'(ZVh) —%hs'(ﬁm)

53 2¢, 11 3., (20)
—Eh fov +_8h fovs1

(6 _ 1

———hf 0
64 fau 2880

2v+1

Similarly from (7), since S(x) is seven degree in
(2v+)h <x < (2v+2)h, we have

h3s/(2v+2h) =351, ) —35f, 4

-@hs '(2v+2 +2h)——hS (2v +1h)

53 (21)

h2 fovio *28 h3 fovs1

h £ )

6 6
64 2V+2 h ()

2880 2V+1

Writing (v+1) for (v) in (20), when v=0,1,2,...., (nT—B) ,
then subtracting with equation (21), we obtain

81

— hS n((@v+1)h) — o0 — (S ((2v+3)h) —

59
=70%2y4p =351 + -

fév+3]

2
h*fov.2 09

22
11 3 "

6¢(6
Eh guag+ oo £50)

11 3
h f2"\(/+1_ 2v+1

+_
48

6 ¢ (6

Setting,
A, =S, (vh)—f'(vh) for v=0,1,2,..,n

2880

' 3
gh f2v+1+ h f2v+3

(23)
From equation (22)

A2v+3]

81
Eh[A2v+l -

2
=70fpy,2 =35 + h f2ui2

——h®£0)

3 3em
h f2v+1_ h f2v+3 2v+1

+_ —_
48 48 2880

6 81 81
T30+ 5" fovs1 g

3t
2880 2v+3

Using Taylor series expansion on the right hand sides
of the above equation, we get:

h7

A —
2v+3] 1440

81 _ 7 @ M
hlAo [20f ~12801 (041776 (o

710 +1296 1) - 22017 |

Fix k, 0< k< n-3 . On summing both sides of (24) for

v=k, k+1,..., nT—l and using the fact that A,=0 , we have

h3 (n=-3)/2

Poks1 = Z [20£{1) 1280 f[(;V) #1771

7 7 7
#7150 +1296 1) - 2201 )]
= 25 690507(vh) |6 <1.

This completes the proof of part 1 of lemma 1. To proof
of second part lemmal, since S(x) is seventh degree in

2vh < x < 2v+1hfrom (8), we have
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Myawm)7gv7mﬂ+ 3hs'2v+h)
+g§hSK2v+m)+fh2Q;+47h3ﬁgﬂ (25)
h HE) 6 ¢ (6) (n—l)
__ L1 peg 0,1,.. .
Y960 > “2ggo’ vV T 2
Similarly, since S(x) is seventh degree in
(2v+1)h<x<2v+2h from (8) for v:O,l,....,(n;S) ,

we have
h2st(2v+th) =71, — 7ty
—%hS’(ZVHh)—?hS'(ZVHh)

3 (26)

2 3 n
+ h f2v+2 h f2v+l
h5 (5) 3 1

—— —h8¢®
960 favia 2880

2v+1

From the above two relations for v=0,1,...., (n-3)

, We

have

% IS, ((2v)h) + Sp (2v +1)h)]

=71y,
33

—Tfoyn

hS (2v+1h)+= hz(f2v+2 f2v) @0

5 3 n h 5
—ﬂh fovi — 960 —( fg(vlg

For v=0, we have an account of Ay =0, Using Taylor
Series, we obtain

f(5))

%hAZ:HZ—HO

—§hf1 —h (f5— 13

——h3f h®
24 96

BECINTRCING,
g ° g 2

5 ( £.(5) f0(5))

S8 33 )

45 @1 2880 2

Lp7gM_ 2 7

10 @ 576

L By By

280" ‘5 90" w6 g

h7

" 2880

+288f (") —
a3

+

[512f(7) 33f(7)
25§ (7)

ay
Ces (D) _gaac(Dq_33
615 ~7361)1-""hA

Therefore, §h|A2| < %h76’1 w7 (2h) +37?h|,61| , Where

|64] <1.Using (18), we have

730

B 863h wr(2h)

Lemma 2: let A, =S} (vh)— f'(vh) for v=0,12,...,n
then

4393 6

415 or () +

|Apy — Poya| < h6 H £ H (28)

Where ” £ ” = Max{‘ £ (x)‘ 0<x sl}
Proof: Setting (v+1) for v in (27), we have for
n-3

v=01...
2

? h[S, ((2v+2)h) + S} ((2v + 4)h)]

=Tfoyra =Tz

33 (29)
NS @ur 3 +2 h2<f2v+4 f2042)
S 3 5 5
-—h f2v+3__(f2(v2r4 fz(vlz)
24
Subtracting (27) from (29) , and using (23), we have
v=0,1,. n >
2
23
Eh[AZV - A2v+4] =7[ f2v+2 - f2v - f2v+4]

22
=57 1710%2v42 =352y = 35153

59

2 3 3
h f2v+2Jr h f2v+l h f2v+3

7 he £, +

6 6

2880 20

—*h (fovea — 2 )+ hh(f2v+4 fay)

V/V 5 5
h3( fove1— fovaa) +— 960 ( f2(V3.4 ( ))

Using Taylor expansion, and after some calculations,
we obtain

23
Y h[AZV - A2v+4]

11 e 1024 1024, 7. (m
315 91v 45 sz
2464 7 (7) 11 5 )
R f —— _h'f
1701 ‘v 1944 'O3v
99 7. 1298 7. )
8 ral f'5’4v h f6‘5v
3 121 W7 § M 121h7f(7)
15552 6’6v 192 Gy
3 77 h7f(7)_ 77 h7 )
38880 %Bv 12960 99v
16 7¢(7) 736 7:0)
h Ty ™ a5 h T
5 NSO

135 TGN
“hif
576 %ov

h7 £(7)
o2 ez T

A4y
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23 16565528 7 108864 , 7 . ()
281 _ 165655287 (4p)_ 108864 7,
=g ey~ Aaval =~ er ) o
4393
>y Ay < 2 n (@) + o 17

Theorem 2: Let f e C7[0,1] and n an odd integer, then
the unique seventh spline S(x) satisfying conditions of
Theoreml, we have

2h " K,
IS0~ Ol
h%(2K;h? +K,) where r=0,1,2,3,4.

where r=5,6

Where

675 405
K; =——h f
1229 w7 (f)+

th(7>H +175h° | Agy | +105h™

and « (.) denotes the modulus of continuity of f ™,

Proof: Let 2vh<x<2v+1,v= OlnT_1 from (9),
we have

X— 2vh X— 2vh

s® (x) = s® (2vh)B, (F=2) + 5O (v +1)h) By ( )

2v+]h X X— 2vh

=5® @B, (=) + s‘ﬁ)((2v+1)h)81(

),

2v+1h—x
h

X —2vh

) =Bi( )

where B ( -

10 (xpe E=20

£ (5O (@uh) - 1O (x) B CZ2N 2Vh)

s® (x)— 1 (x) = (s© (2vh) -

Since Bl(m]h Xy 4 By(

h
vx e[0,1]

X— 2vh <1,

‘s(ﬁ) x)-f® (x)‘ < ‘5(6) (2vh) - £© (x)‘ +‘s(6) (2v+1h) - f(e)(x)‘ <2K,

Where

_575 405 11.(7) 5 .
Kl_720hw7(f)+720th H+175h ‘AZV\_HLOSh ‘A2V+l‘

Since

sO)-1Ox) = [ (@) - O )dt+s® @uh)- 1)

X2v
and 5O (vh) = f®(2vh) | ‘S(S)(x)—f(S)(x) < 2hK, |
similarly ‘8(4)(x)—f(4)(x)‘£2h2K1+K2 . where

K, = ‘s(“) (2vh)— @ (2vh)‘

X
sAW-1Fw= [ Wo-1@w)dt+s®@+tn)- 3,

X2v+1

since S® (2v+1h) = £ (2v +1h)

R ‘5(3) x)-1O (x)‘ < h(2K;h? +Ky)

— £"(x)| < h?(2K{h? + Kj)

S(2vh) = f(2vh) , S(2v+lh)= f(2v+1h)
S'(A)=f'(1) , 2vh<i<2v+l , and

|S"(x)— £'(x)| < h[S"(x)— £"(x)| < h3(2K;h? + Ky) , similarly

|S(x) - f (x| <h*(2K;h? +Ky) .

Since

therefore

4. Conclusion

In this paper, we apply the two inhomogeneous seventh
spline interpolations for finding the best optimal errors
bound, also order of spline and the boundary conditions
are developed. Convergence analysis and basic properties
of the inhomogeneous spline model has been proposed.
Also, the continuity of derivatives across mesh points
improves convergence for the spline function.
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