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Abstract  Longitudinal studies represent one of the principal research strategies employed in medical and social 

research. These studies are the most appropriate for studying individual change over time. The prematurely 

withdrawal of some subjects from the study (dropout) is termed nonrandom when the probability of missingness 

depends on the missing value. Nonrandom dropout is common phenomenon associated with longitudinal data and it 

complicates statistical inference. The shared parameter model is used to fit longitudinal data in the presence of 

nonrandom dropout. The stochastic EM algorithm is developed to obtain the model parameter estimates. Also, 

parameter estimates of the dropout model have been obtained. Standard errors of estimates have been calculated 

using the developed Monte Carlo method. The proposed approach performance is evaluated through a simulation 

study. Also, the proposed approach is applied to a real data set. 

Keywords: longitudinal data, missing data, Monte Carlo, nonrandom missing, repeated measures, shared 
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1. Introduction 

In longitudinal studies each subject is measured 

repeatedly for the same response variable at different 

times or different condition or both. For example, if the 

weights of a sample of individuals are measured once a 

week for twenty consecutive weeks, the collection of these 

weights is longitudinal data. The main advantage of 

longitudinal studies is that it can distinguish changes over 

time within individuals and enabling direct study of that 

change. 

Longitudinal data are very common in biomedical 

research and clinical trials where some of measurement of 

a person develops over time, for example the status of a 

disease of one person or the value of a car, evolves or 

develops over time. In these cases one variable is the 

underlying characteristic or measurement. Longitudinal 

studies are in contrast to cross–sectional studies in which 

single outcome are measured for each individual (taken at 

only one fixed point in time).  

Missing data are very common with longitudinal 

studies.  The missing data occur whenever, one or more of, 

measurement sequences are incomplete. The missing 

values could be for many reasons. Missing data can be 

categorized into two different patterns; intermittent 

missing pattern and dropout pattern. In intermittent pattern 

a missing value could be followed by an observed value. 

Dropout means a missing value never followed by an 

observed value.  

A distinguishing feature of incomplete longitudinal data 

analysis is the need to address the underlying causes of 

missing values. Missing data mechanism is classified to 

three different types due to [1,2]. These types are missing 

completely at random, missing at random, and nonrandom 

missingness. A nonresponse process is missing completely 

at random (MCAR) if the missingness is independent of 

both unobserved and observed data, and missing at 

random (MAR) if, conditional on the observed data, the 

missingness is independent of the unobserved 

measurements. A process that is neither MCAR nor MAR 

is nonrandom (MNAR). For likelihood inference, and 

when the parameters describing the measurement process 

are functionally independent of the parameters describing 

the missingness process, MCAR and MAR are ignorable, 

in which case the missingness process can be ignored 

when interest is in inference for the longitudinal process 

only. The missing data mechanism is referred to as 

informative if the probability of missingness is related to 

the underlying response process [3]. Follmann and Wu [4] 

have shown that informative missing mechanism is a 

special case of the nonignorable missing mechanism. 

Ignoring the missing values with longitudinal data 

analysis would lead to biased inference. Many authors 

have tried to model jointly the response process and the 

missing data process. This modeling framework includes 

the selection models, pattern mixture models and shared 

parameter models. In shared parameter models a random 

effect is shared between the repeated measures model and 

the missing data mechanism model.  

Many authors have proposed a shared parameter model 

for longitudinal data subject to informative missingness. 

Wu and Carroll [3,5] proposed a model for continuous 

normally distributed longitudinal data. Follmann and Wu 

[4,6,7,8,9] proposed models for binary longitudinal 

responses. Albert and Follmann [10] proposed 

methodology for longitudinal count data. 
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The EM algorithm [11] can be used to obtain the 

maximum-likelihood estimates for incomplete data. 

However, in the nonrandom case, the simplicity of the EM 

algorithm is lost. The expectation step is problematic and 

does not admit a closed form solution.  Also, in some 

situations, the M-step is computationally unattractive. 

Many authors have tried to introduce new variants of the 

EM algorithm that can overcome the complexity of the E-

step.  A possible solution for the intractable E-step is to 

use the Monte Carlo EM algorithm [12,13] and a 

stochastic version of the EM algorithm [13-18]. A 

relatively recent review of the EM algorithm and its 

extensions is in [19] and references therein. The stochastic 

EM (SEM) algorithm is a stochastic version of the EM 

algorithm, which has been introduced by [14], and 

subsequently in [16], as a way for executing the E-step 

using simulation. 

The EM algorithm does not provide directly the 

standard errors of the estimates. Hence, methods for 

evaluating these standard errors need to be considered. 

Several methods have been introduced to solve this 

problem, see for example, Louis [20,21,22]. Efron [23] 

and [24] have introduced a stochastic version of the Louis’ 

method (the Monte Carlo method). 

In the current paper, we propose a model in which a 

random effect is shared between the response process and 

the missing data mechanism. We develop the stochastic 

EM algorithm (SEM algorithm) to estimate the model 

parameters. Also, the Monte Carlo method is developed to 

obtain the standard errors. In Section 2 we discuss the 

motivating opiate clinical trial example. In Section 3, we 

develop the random effects transition model and discuss 

parameter estimation in Section 4. We illustrate this 

methodology with the opiate clinical trial data in Section 5. 

A discussion follows in Section 6. 

2. The Models  

Assume that the number of subjects is m and the 

intended measurements for the ith subject are ni . Assume 

that due to missing data only no measurements are 

available of the ni, whereas nim measurements are missing, 

ni=nio+nim. Let yij represents the jth measurement on the 

ith subject, i=1, . . . , m, j=1, …, ni. Let Yi be an ni×1 

vector containing the responses that would be obtained, 

for the ith subject, if there were no missing values. 

Assume that the observed and missing components of Yi 

are denoted as Yi,obs and Yi,mis, respectively. Let Ri be a 

vector of missingness indicators. For a particular 

realization of (Yi,Ri ), each element of Ri takes a value of 

one if the corresponding value of Yi is observed and the 

value of zero if the corresponding value of Yi is missing. 

In notation; 
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It is common to jointly model the response process and 

the missingness process. The complete data of the ith 

subject can be viewed as (Yi,obs,Yi,mis,Ri), and the full 

density function is f(Yi,obs,Yi,mis,Ri| θ, ψ), where the 

parameters vectors θ and ψ describe the measurement and 

missingness processes, respectively. 

The selection model and pattern mixture model are 

different factorization of the full density function 

f(Yi,obs,Yi,mis,Ri| θ, ψ). The selection model framework is 

based on the factorization; 

 , , , , , ,, , |  ,  ( , | ) ( | , ,  )i obs i mis i i obs i mis i i obs i misf Y Y R f Y Y f R Y Y    . 

The first factor is the marginal density of the 

measurement process and the second one is the density of 

the missingness process, conditional on the response. The 

pattern-mixture model (Little, 1994) is based on the 

factorization;  

 , , , ,, , |  ,  ( , | , ) ( | ).i obs i mis i i obs i mis i if Y Y R f Y Y R f R     

This can be seen as a mixture of different populations, 

characterized by the observed pattern of missingness. 

Instead of using the selection model or pattern-mixture 

model, the measurement and the missingness process can 

be jointly modelled by using a shared-parameter model 

[3,5,6]. These models assume that there is a vector of 

random effects bi, that is shared between the response and 

missingness process. 

Different missing data mechanisms defined by [1] can 

be defined according to the conditional distribution f(Ri | 

Yi,obs,Yi,mis, ψ). The missing data mechanism is MCAR if 

f(Ri | Yi,obs,Yi,mis, ψ)= f(Ri | ψ), the missing data mechanism 

is MAR if f(Ri | Yi,obs,Yi,mis, ψ)= f(Ri | Yi,obs, ψ), otherwise 

the missing data mechanism is MNAR. 

The shared parameter model assume that the response 

process Yi and the missing data mechanism indicator Ri are 

conditionally independent of each other, given a group of 

parameters, bi. Hence the density function of the complete 

data f(Yi,obs,Yi,mis,Ri| θ, ψ) can be written as 
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Shared parameters bi affect both the response Yi and the 

missing data indicator Ri, thus can be either observable 

variables (e.g., gender) or latent variables.  

Assuming that the response variable Yi is continuous so, 

the mixed effects model assumes that the response vectors 

Yi satisfies the linear regression model;  

   ,i i i i iY X Z b     

where Xi is a set of explanatory variables (design matrix), 

 is a p× 1 vector of fixed effect parameter, Zi is the 

random effects covariates and bi  is a shared parameter. 

The shared parameters bi are assumed to be normally 

distributed with a zero mean and a variance equal to σ
2
. 

The errors 
i
 are assumed to be independent normally 

distributed with zero means and Vi covariance matrix. The 

matrix Vi may be unstructured and hence it contains 

ni(ni+1)/2 parameters. Also, the covariance matrix may 

have a parametric structure, i.e. its elements are functions 

of a smaller number (vector) of parameters α. In this case 

it can be written as Vi (α). The main reason for modelling 

the covariance matrix, Vi, as a function of parameters α  is 

to examine different covariance structures, and for 

parsimony. 
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Tsonaka et al [25] have shown that the shared 

parameters model, by construction, implies a missing not 

at random (MNAR) mechanism. The conditional 

distribution f(Ri | Yi,obs,Yi,mis, ψ) can be viewed as  

, , , , i( | , , ) ( | , ) ( | , , )  i i obs i mis i i i i obs i misf R Y Y f R b f b Y Y d b     

which shows that the probability of nonresponse depends 

on Yi,mis through the posterior f(bi | Yi,obs,Yi,mis, ψ), 

corresponding therefore to a nonignorable mechanism.  

The missing data process, conditional on the random 

effects bi, can be modeled as [9], 
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 (1) 

where wkij  are vectors of covariates and k are their 

corresponding regression coefficients. Also, the 

parameters γk relate the missingness process (intermittent 

or dropout) to the response process. 

The likelihood function for the parameters (θ, ψ), 
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where noi is the number of observed measurements for 

subject i, ti is the last measurement time,  

Plij=P(Rij=l|bi,Rij-1≠2), l=1,2 are as given in Eq. (1) and I(.) 

are indicator function which equal 1 if the condition is met 

and zero otherwise. Note that, 
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where viobs and Xi is a suitable partition of the Vi and Xi 

respectively and θ=(β,α). 

Maximizing this likelihood function we can obtain the 

parameter estimates. However, this maximization is not 

easy to implement and computationally intractable. We 

suggest and develop the stochastic EM algorithm to obtain 

the parameters estimates. 

3. Estimation 

We propose fitting the shared parameters model using 

the stochastic EM algorithm. Gad and Ahmed [26] 

proposed and developed this algorithm in selection models 

context. In the shared parameters model context the 

complete data are Yiobs, Yimis, Ri and bi. In the S-step we 

need to simulate from the missing data distribution given 

the observed data, i.e. the conditional distribution 

  ,, , |  .imis i iobs if Y b Y R  

This distribution can be partitioned as; 

 ( , | , ) ( ) ( | , , ).imis i iobs i i imis i iobs if Y b Y R f b f Y b Y R  

Hence, to simulate from this conditional distribution of 

the missing data given the observed data, we need to 

simulate from two distributions. First, we simulate from 

the marginal distribution of bi, f(bi). This is a normal 

distribution. Second, we simulate from the conditional 

distribution of the missing data, f(Yimis|bi,Yiobs,Ri). We 

argue that this simulation can be performed from the 

conditional distribution f(Yimis|bi,Yiobs,), since the missing 

data depend on the missing data indicator through the 

random effect parameter. This distribution now is a 

normal distribution. The developed EM algorithm iterates 

two main steps; the stochastic step (S-step) and the 

maximization step (M-step). Henc at the (t+1)th iteration 

iterates the following steps. 

S-step:  

This step consists of two sub-steps; sub-step I and sub-

step II. 

Sub-step I: For each subject i a single draw is obtained 

from the marginal distribution of bi; f(bi|σ
2(t)

). This 

distribution is the normal distribution with mean zero and 

variance σ
2
.  

Sub-step II: The missing values of each subject is 

simulated from the conditional distribution 

f(Yimis|Yiobs,bi,θ
(t)

,ψ
(t)

). Note that σ
2(t)

, θ
(t)

 and ψ
(t)

  are the 

current parameters estimates. In case of the dropout 

pattern we can simulate the first missing value only for 

each subject. The remaining missing values in this case 

can be assumed missing completely at random. 

M-Step:  

The M-step consists of two sub-steps, the logistic step 

(M1-step) and the normal step (M2-step). In the M1-step, 

the maximum likelihood estimates of the dropout 

parameters in model are obtained using any iterative 

method for likelihood estimation of binary data models 

(see, for example [27]). In the M2-step, the maximum 

likelihood estimates of the parameters β and α are 

obtained using an appropriate optimization approach for 

incomplete data. We recommend using the Jennrich-

Schluchter algorithm [28].  

4. Standard Errors 

Louis [20] suggest that the information matrix can be 

approximated by 
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 (3) 

where θ is fixed at the stochastic EM estimates and 

( , )obs misl Y Y  is the log-likelihood function.  

Evaluating the integrals in the formula in Eq. (3), in the 

current setting, may not be easy. Efron [23], also in Ip [24], 

suggest using simulation (the Monte Carlo method) to 

approximate the integrations in Eq. (3). The missing 

values are simulated from their conditional distribution 

and then integrations are evaluated by their empirical 

versions. 

The main idea is to simulate M identically distributed 

samples, q1, q2, …., qM from the conditional distribution of 

the missing values given the observed values and the 



 American Journal of Applied Mathematics and Statistics 33 

parameters estimates, f(Ymis|Yobs, ̂ ). Hence the Louis 

formula (3) can be approximated by its empirical version, 

i.e. 
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obs j
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The Monte Carlo method is developed to find standard 

errors of the stochastic EM estimates of parameters. The 

main idea is to simulate M independent identically 

distributed samples from the conditional distribution of 

the missing data given the observed data. Hence, we 

simulate q1,q2, …,qM samples from the conditional 

distribution f(Yimis|bi,Yiobs,Ri) and h1,h2, …,hM  from the 

conditional distribution f(bi). Then the two parts in the 

right hand side of the formula (3) can be approximated by 

their empirical versions. In notation, 

 
2

1

( , , , )1 M
obs j j

j

l Y R q h
E

M



 



 
  

and 

 ( , , , )
cov

obs j jl Y R q h
C





  
 

 
  

where the parameters ( , , )     is fixed at the SEM 

estimates, ^ ^ ^ ^( , , )    . 

Having the M pseudo-complete data, the first and 

second order derivatives of the log-likelihood function are 

evaluated for each sample, and then it is possible to 

calculate the quantities E and C and hence the information 

matrix. The inverse of the information matrix is the 

covariance matrix of the stochastic EM estimates. The 

standard error estimates are the square root of the main 

diagonal elements of this matrix. 

5. Application (Anti-Depressant Trial) 

This data set is taken from a multicenter clinical trial on 

the treatment of depression. In each of six centers subjects 

were randomized to one of three treatments, 

approximately 20 subjects receiving each treatment in 

each center. The total number of subjects was 367. Each 

subject was rated on the Hamilton depression score 

(HAMD); a sum of 16 test items producing a response on 

a 0-50 scale. Measurements were made on each of five 

weekly visits. The first measurement made before the 

treatment and the remaining four measurements made 

during treatment. Dropout occurs from the third 

measurement onwards. At the end of the trail 123 (33%) 

subjects had left.  

A subset of these data have been analyzed by [29], who 

considered several analyses, including a maximum 

likelihood analysis. They have shown that an ante-

dependence covariance structure of order 2, AD(2), is 

appropriate for these data. 

Diggle and Kenward [30] use maximum likelihood 

analysis for these data using the same covariance structure, 

AD(2), as in [29], with a less restricted model for the 

mean response. For the mean profile, they consider a 

model in which each center is allowed to have a different 

intercept and quadratic regression relationships for each 

treatment group.  

Figure 1 shows the set of simple mean profiles, based 

on the observed data for each center. The figure suggests 

that there is a nonlinear relationship between mean 

profiles and time. For this reason [30] suggest modeling 

the mean profile using quadratic regression for each 

treatment group. 

 

Figure 1. Observed mean response profiles from antidepressant data trail 

for each center: (A) center 1; (B) center 2; (c) center 3; (D) center4; (E) 

center 5; (F) center 6 

The set of profiles for the completers at each center are 

plotted in Figure 2. Several aspects can be concluded from 

this figure. First, there is typical decrease of HAMD score 

over time in all the centers. Second, the dispersion of 

measurements between subjects at week 5 higher than 

week 1. Third, in center 2, there is a subject stars and 

remains at a high value. 

 

Figure 2. Observed measurements of antidepressant data and centers: : 

(A) center 1; (B) center 2; (c) center 3; (D) center4; (E) center 5; (F) 

center 6 

Table 1 shows number of subjects who dropout at each 

treatment in each center. The positive and negative 

columns shows number of subjects with positive and 
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negative score increment, respectively, who dropout over 

the trial period. Center 6 has the highest number of 

dropouts. 

Generally subjects with negative score increments tend 

to dropout except for few subjects. Dropout occurs 

consistently from week 3 to week 5, except in the second 

treatment in center 6. In general week 3 has the highest 

number of dropouts. 

Table 1. Number of dropouts at each center treatment combination 

of antidepressant data 

Total 

Treatment 

3 

Treatment 

2 

Treatment  

 
Center 

+ve -ve +ve -ve +ve -ve  

24 6 2 2 6 1 7 Center 1 

20 1 4 2 3 4 6 Center 2 

17 0 2 4 6 2 3 Center 3 

19 3 4 3 4 4 1 Center 4 

16 1 4 2 4 2 3 Center 5 

27 1 4 1 7 1 10 Center 6 

Table 2. The stochastic EM estimates and their standard errors for 

antidepressant data 

Standard Errors Estimates Parameter 

0  12.03 0.45 

1  9.70 0.47 

2  5.57 0.42 

3  2.83 0.44 

4  1.97 0.46 

5  1.07 0.41 

1  0.27 0.03 

11  14.72 1.08 

12  12.40 1.32 

13  8.70 1.40 

14  7.80 1.35 

15  5.60 1.45 

22  36.13 2.64 

23  21.93 2.41 

24  17.50 2.31 

25  12.50 2.39 

33  37.66 2.87 

34  24.02 2.65 

35  22.90 2.71 

44  41.38 2.90 

45  22.90 2.78 

55  40.51 3.69 

The proposed model is used for these data. The 

responses are modeled as: 

 
i i i i iY X Z b     

where Yi  is the antidepressant measures, Xi  is a design 

matrix,   is a vector of unknown parameters represent 

the centers  effect in addition to a constant parameter; 

0 1 2 3 4 5( , , , , , ) ',       bi is the random effects 

and Zi is a design matrix associated with the shared 

parameters.  

Table 3. The stochastic EM estimates vs. true parameters values for 

the simulated data 

Parameter Actual Estimate 
Relative 
Bias % 

0  8.00 8.02 0.3 

1  6.00 5.45 9.2 

2  5.00 5.08 1.6 

3  7.00 6.35 9.3 

4  3.00 2.58 14.0 

5  2.00 1.85 7.5 

1  0.30 0.28 7.3 

11  0.80 0.71 11.2 

12  0.60 0.62 3.3 

13  0.90 1.02 13.3 

14  1.25 1.03 17.6 

15  1.50 1.62 8.0 

22  0.50 0.58 16.0 

23  0.37 0.40 8.1 

24  0.34 0.31 8.8 

25  0.16 0.18 12.5 

33  2.44 2.56 4.9 

34  0.89 1.03 15.7 

35  0.92 0.89 3.3 

44  1.63 1.78 9.2 

45  2.38 2.50 5.0 

55  0.40 0.51 27.5 

The dropout process is modeled according to the model 

in Eq. (1). Note that the dropout can be considered as a 

special case of Eq. (3). The model is  

 1 1 1logit( ) log( )
1

i
i i i

i

p
p w b

p
   


 

The developed stochastic EM algorithm has been 

applied to the models. The parameters estimates of the 

response model and the dropout model are presented in 

Table 2. These parameter estimates have been obtained for 

3000 iteration and stop when the difference between the 
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last two is less than .0001 for Jennrich-Schluchter 

algorithm. 

From the results in Table 2 we conclude that the centers 

effects are statistically significant. Also, the covariance 

parameters are highly significant. The shared parameter 

1 is significant which support the nonrandom dropout. 

6. Simulation Study 

The aim of this simulation study is to validate the 

obtained stochastic EM estimate by comparing them with 

the true parameters. The simulation setup is as follows. A 

random effects linear model is used for the response as 

 Yi = Xi   + bi + ,i  

where   is a vector consists of  
0 1 2 3 4 5, , , , ,      . 

The residuals 
i
 are assumed to be independent normally 

distributed with zero means and covariance matrix Vi.  

The dropout process is modeled using the logistic model.  

Hence, we have 6 parameters of the response and the 

dropout model there is only one parameter (γ). 

The developed stochastic EM algorithm is used to find 

the parameter estimates. The number of iterations is fixed 

at 3000. The results are presented in Table 3. 

Depending on this simulation we can see that the 

absolute relative bias is small to moderate. The maximum 

relative bias is around 27%. This means that the proposed 

approach produce parameters estimates close to the true 

parameters values. Hence, we can conclude that the 

proposed approach is reliable and gives reasonable results. 

References  

[1] Rubin, D. B. “Inference and missing data”. Biometrika, 63, 581-
592. 1976. 

[2] Little, R.J.A., Rubin, D.B., “Statistical Analysis with Missing 
Data”,.Wiley, NewYork.1987. 

[3] Wu, M. C. and Carroll, R. J. “Estimation and comparison of 
changes in the presence of informative right censoring by 

modelling the censoring process”, Biometrics, 44, 175-188. 1988. 

[4] Follmann, D. and Wu. M. “An approximate generalized linear 
model with random effects for informative missing Data”, 

Biometrics, 51, 151- 168. 1995. 

[5] Wu, M. C. and Bailey, K. R. “Estimation and comparison of 
changes in the presence of informative right censoring: conditional 

linear model”, Biometrics, 45, 939-955. 1989. 

[6] Ten Have, T. R., Kunselman, A. R., Pulkstenis, E. P., and Landis, 

J. R. “Mixed effects logistic regression models for longitudinal 

binary response data with informative drop-out”. Biometrics 54, 

367-383. 1998. 

[7] Pulkstenis, E.P., Ten Have, T. R. and Landis, J. R. “Model for the 
analysis of binary longitudinal pain data subject to informative 

dropout through remedication”, Journal of the American Statistical 
Association, 93, 438-450. 1998. 

[8] Wu, M.C. and Follmann, D. A. “Use of summary measures to 

adjust for informative missingness in repeated measures data with 
random effects”, Biometrics, 55, 75-84. 1999. 

[9] Albert, P. S and Follumann, D.A., “A random effects transition 
model for longitudinal binary data with informative missigness”, 

Statistica Neerlandica, 57, 100-111. 2003. 

[10] Albert, P.S. and Follmann, D. A. “Modeling repeated count data 
subject to informative dropout”, Biometrics, 56, 667-677. 2000. 

[11] Dempster, A.P., Larid, N.M. and Rubin, D.B., “Maximum 
likelihood from incomplete data via the EM algorithm (with 

discussion)”, Journal of Royal Statistical Society B, 39, 1-38. 1997.  

[12] Tanner, M.A.,Wong,W.H., “The calculation of posterior 
distributions by data augmentation (with discussion)”, Journal of 

American Statistical Association, 82, 528-550. 1987. 

[13] Wei, G.C.G., Tanner, M.A., “A Monte Carlo implementation of 

the EM algorithm and the poor man’s data augmentation 
algorithm,” Journal Royal Statistical Society B, 55, 425-437. 1990. 

[14] Celuex, G., Diebolt, J., “The SEM algorithm: a probabilistic 

teacher algorithm derived from the EM algorithm for the mixture 
problems,” Computational Statistics Quarterly, 2, 73-82. 1985. 

[15] Delyon, B., Lavielle, M., Moulines, E., “Convergence of a 
stochastic approximation version of the EM Algorithm,” Annals of 

Statistics, 27, 94-128. 1999. 

[16] Diebolt, J., Ip, E.H.S., “Stochastic EM: method and application”. 
In: Gilks,W.R., Richardson, S., Spiegelhalter, D.J. (Eds.), Markov 

Chain Monte Carlo in Practice. Chapman & Hall, London. 
(Chapter 15). 1996. 

[17] Gu, M.G., Kong, F.H., “A stochastic approximation algorithm 

with Markov chain Monte Carlo method for incomplete data 
estimation problems,” Proc. Natl. Acad. Sci. USA 98, 7270-7274. 

1998. 

[18] Zhu, H.T., Lee, S.Y., “Analysis of generalized linear mixed 
models via a stochastic approximation algorithm with Markov 

chain Monte Carlo method,” Statist. Comput., 12, 175-183. 2002. 

[19] McLachlan, G.J., Krishnan, T., “The EM Algorithm and 

Extensions”, Wiley, New York. 1997. 

[20] Louis, T.A., “Finding the observed information matrix when using 

the EM algorithm”. Journal of Royal Statistical Society, B 44, 
226-232. 1982. 

[21] Meilijson, I., “A fast improvement to the EM algorithm on its own 

terms”, Journal of Royal Statistical Society, B 51, 127-138. 1989. 

[22] Meng, X.L., Rubin, D.B., “Maximum likelihood estimation via the 

ECM algorithm: a general framework”, Biometrika, 80, 267-278. 
1993. 

[23] Efron, B., “Missing data, imputation, and the bootstrap”. Journal 
of American Statistical Association, 89, 463-475. 1994. 

[24] Ip, E.H.S., “A stochastic EM estimator in the presence of missing 

data: theory and applications”. Technical Report, Division of 
Biostatistics, Stanford University, Stanford, California, US. 1994. 

[25] Tsonaka, R., Verbeke, G. and Lesaffre, E. “A semi-parametric 
shared parameter model to handle nonmonotone nonignorable 

missingness”, Biometrics 65, 81-87. 2009. 

[26] Gad, A.M and Ahmed, A. S.  “Analysis of longitudinal data with 
intermittent missing values using the stochastic EM algorithm”. 

Computational Statistics & Data Analysis, 50, 2702-2714. 2006. 

[27] McCullagh, P. and Nelder, J. A. “Generalized Linear Models”. 

2nd edititon, Chapman and Hall, England. 1989. 

[28] Jennrich, R.I., Schluchter,M.D., “Unbalanced repeated measures 

models with structured covariance matrices”. Biometrika 42, 805-

820. 1986. 

[29] Heyting, A. and Tolboom, J. T. B. M. and Essers, J. G. A. 

“Statistical handling of dropouts in longitudinal clinical trials”, 
Statistics in Medicine, 11, 2043-2062. 1992. 

[30] Diggle, P.J. and Kenward, M.G. “Informative dropout in 
longitudinal data analysis”, Journal of Royal Statistical Society B, 

43, 49-93. 1994. 

 


