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Abstract  In this paper, viscous fluid flow over an unconventional diamond-shaped obstacle in a confined channel 

is simulated in low to moderate Reynolds numbers. The diamond-shaped obstacle is altered geometrically in order to 

represent different blockage coefficients based on the channel height and different aspect ratios based on the length 

to height ratios of the obstacle. An in-house finite difference Navier-Stokes solver using staggered grid arrangement 

and Chorin’s projection method is developed for the simulation of the laminar viscous flow. The numerical solver is 

validated against numerical results that are presented in the literature for the flow over rectangular cylinders and 

good agreement is observed. Grid resolution has been studied within a mesh convergence test and as a result, 

suitable grid dimension is achieved. A series of simulations have been carried out for each set of geometry and 

configuration in order to find the critical Reynolds number for each case in which the vortex shedding will occur. 

Therefore, simulations are divided into two groups of steady and unsteady flows. In the case of unsteady flow, non-

dimensional Strouhal Number (St) is investigated and results prove the dependency of St on the blockage coefficient 

and aspect ratio. It is shown that the Strouhal number will increase with the rise of blockage ratio and the local 

maximum of St will occur at lower Re for geometries with lower aspect ratios (bluff bodies) than geometries with 

higher aspect ratios, i.e. with more streamlined bodies. 
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1. Introduction 

Flow around bluff and streamlined bodies has attracted 

many scientists and researchers for long period of time. 

The importance of this problem can be sought in its vast 

applications in engineering problems. Separation and 

vortex shedding are the common phenomena which 

happen at relatively low Reynolds numbers as a result of 

high positive pressure gradients. Vortex shedding causes 

fluctuation of pressure distribution on the body surface. 

Due to the vortex-induced forces, the body oscillates with 

a definite frequency. This may cause damages to 

structures such as suspended bridges and offshore oil 

platforms. Despite of many studies which have been done 

on flow around circular cylinders, rectangular shaped 

obstacles have been studied less experimentally and 

numerically, however, these shapes have many 

applications in analysis of aerodynamics of structures and 

fluid-structure interaction (FSI) problems. In the problem 

of flow around a confined cylinder in addition to the 

common parameters such as Reynolds number, another 

parameter called blockage coefficient (which is defined as 

the ratio of square side length to the channel height) 

should be considered [1]. 

Based on Reynolds number, different regimes of flow 

can be observed for the problem of flow around confined 

rectangular cylinder [2]. At very low Reynolds numbers 

(Re << 1), viscous forces dominate the flow. In this 

creeping flow, no separation occurs. With the increase of 

Reynolds number, flow separates at trailing edge and 

forms a recirculation region which consists of two 

symmetric vortices. Size of recirculation zone increases 

with an increase of Reynolds number and by reaching the 

critical Reynolds number, Von Kármán vortex street with 

periodic vortex shedding happens. With further increase of 

Reynolds number beyond this critical value, separation 

will occur in the leading edge, but the range of Re for this 

phenomenon has not been studied clearly and only the 

range of 100-150 is reported [2,3]. 

Okajima [3] has investigated the Strouhal number for 

aspect ratios (ratio of cylinder’s length to height) of 1 to 4 

and a range of Reynolds numbers and stated the 

commence of periodic vortex motion at Reynolds number 

of 70 leading to an upper limit of critical Reynolds 

number at Re ≈ 70. A smaller value of critical Reynolds 

number Re ≈ 54 was determined by Klekar and Patankar 

[4] based on a stability analysis of the flow. Davis et al. [5] 

interpreted flow around a rectangular cylinder for a wide 

range of Reynolds numbers and aspect ratios of 1/4 and 

1/6. Two-dimensional study of this problem for Reynolds 

numbers of 90 to 1200 and aspect ratios of 1/8 and 1/4 has 

been done by Mukhopadhyay et al. [6]. Also, Suzuki et al. 

[7] has investigated this problem for a range of Reynolds 

numbers from 56.3 to 225 and aspect ratios of 1/20 to 1/5. 

Sohankar et al. [8] have studied the effects of blockage 

coefficient on an unsteady 2-D laminar flow at different 

angles of incident for Reynolds numbers of 100 and 200. 

Moreover, experimental and numerical analyses have been 
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carried out by Nakamura et al. [9] for low Reynolds 

numbers. Experiments have been carried out at a low 

speed wind tunnel and the numerical analysis was based 

on the finite difference method of 2-D Navier-Stokes 

equations. The aspect ratio of the tested rectangular 

cylinders ranged from 3 to 16 in the experiments and 3 to 

10 in the numerical computations. 

Contrary to the flow around circular cylinder in which 

Reynolds number of 180 is introduced as the starting point 

for the formation of 3D structures in the wake, there has 

not been an accurate and comprehensive study on this 

phenomenon for flow around rectangular cylinders. As a 

hint, Reynolds number of 300 has been introduced by 

Franke [2] as starting point of this phenomenon. Breuer et 

al. [1] stated that this criterion is slightly beyond the limit 

of 2D simulation and the disturbances which occur in the 

periodic nature of 2D vortex shedding, has proved this 

theory. They studied flow around rectangular cylinder for 

the blockage coefficient of 1/8 and by two different 

methods of finite volume method (FVM) and lattice-

boltzmann method (LBM). The experimental studies of 

Dutta et al [10] has verified the results of Breuer et al [1] 

and showed that beyond the Reynolds number of 200 

aspect ratio of cylinder has to be taken into account due to 

the formation of 3D structures. One of the most recent 

studies in this field has been carried out by Berrone et al. 

[11] by means of adaptive finite element method (AFEM) 

and FVM for aspect ratios of 1 to 5 and Reynolds numbers 

of 100, 400 and 1000. 

For higher Reynolds numbers, numerical modelings 

have been done by different methods like large eddy 

simulation (LES) and high expensive computational 

method of direct numerical simulation (DNS). As an 

example, Bruno et al. [12] studied flow around a cylinder 

at Re = 40,000 by means of a finite volume discretization 

method. John and Rang [13] applied finite element 

method to the large eddy simulations of the flow past a 

square cylinder at Re = 22,000. Other studies have been 

done by Xin liang et al. [14] and Kogaki et al. [15]. 

Dutta et al. [10] have experimentally studied flow past a 

square cylinder placed at an angle of incidence using 

particle image velocimetry, hot wire anemometry, and 

flow visualization. Data for four cylinder orientations θ=0, 

22.5, 30, and 45° (diamond-shaped) and two aspect ratios 

of 16 and 28 have been reported. Reynolds numbers 

ranging 200 to 410 have been chosen. Results are 

presented in terms of drag coefficient, Strouhal number, 

time averaged velocity, stream traces, turbulence intensity, 

powerspectra, and vorticity field. A minimum of drag 

coefficient and maximum of Strouhal number is reported 

at a cylinder orientation of θ=22.5°. The effect of the 

aspect ratio has been studied and the results proved the 

formation of 3D structures and entrance to turbulent zone 

for Re > 200. 

For the current problem of flow around diamond-

shaped obstacle another investigation has been done by W. 

Regulski and Szumbarski [16]. They applied Lattice-

Boltzmann approach and studied flow around circular and 

diamond-shaped obstacle in the blockage coefficient of 

0.4 with the use of a Spectral Element Method (SEM) in 

the regime of low and moderate Reynolds numbers 

ranging from 10 to 200. The velocity profiles for the 

channel are reported and Strouhal number of the Von 

Kármán vortex street behind the cylinder and the pressure 

drop is calculated for different Reynolds numbers. 

In the present study, 2D laminar flow around a confined 

diamond-shaped obstacle has been investigated using a 

finite difference Navier-Stokes solver. Five different 

geometries have been studied in a range of different 

Reynolds numbers starting from fully viscous or creeping 

flow at Re = 1, subcritical Reynolds numbers, critical 

Reynolds number Recr and super critical Reynolds 

numbers up to the limit of 2D simulations, i.e. Re ≤ 200. 

Mesh dependency study has been carried out for a set of 

four different grid resolutions which includes minimum 

cell sizes of Δh = 0.05, 0.01, 0.005, 0.001 mm. 

Validation of results is carried out using the present 

data for the problem of flow around rectangular cylinder 

in a range of subcritical Re and blockage coefficient of 1/8 

[1]. 

Governing equations and the numerical procedure are 

discussed in section 2. In section 3, the computational 

domain, geometry configurations, boundary conditions 

along with mesh dependency and validation tests are 

presented. Section 4 includes the numerical results from 

flow simulation in both steady and unsteady regimes. 

Investigations on the critical Reynolds number and the St 

in the regime of unsteady flow are presented in sections 

4.2 and 4.2.1, respectively. A discussion and conclusion 

on the obtained results are offered in section 5. 

2. Description of Numerical Method 

Numerical representation of fluid flow dynamic is 

sought through a set of governing formula known as 

Navier-Stokes equations. The laminar viscous flow in 2-

dimensional framework is written in form of two 

momentum equations and a continuity equation which 

satisfies the conservation of mass in the computational 

domain and within the fluid. The non-dimensional 

governing equations are the momentum equations as in 
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and the continuity equation for the conservation of mass 

as in 
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in which iu  are the velocities,  is the pressure and  is 

the external forces acting on the fluid. In the non-

dimensional form of equations as stated above, Re is the 

Reynolds number that can be calculated using the fluid 

properties, velocity and a characteristic length as follows: 
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Here, v  is the dynamic viscosity of the fluid. In order 

to overcome the problem of oscillating pressure field, a 
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staggered grid arrangement is used in which the pressure 

data is located at the cell centers and the 1u  and 2u  

velocities are placed on the vertical and horizontal cell 

faces, respectively. This type of variable positioning has 

an infamous alternative called co-located grids [18] for 

which 1u , 2u  and p  are all evaluated at cell centers and 

a finite volume-based discretization employs special 

interpolation schemes to determine the flux across the cell 

edges. It is well-known that a naïve co-located grid 

arrangement leads to a decoupled (checkerboard) pressure 

field and oscillations in solutions. Therefore, in the present 

study, the staggered grid arrangement is chosen for the 

positioning of the primitive variables. An equidistant 

orthogonal grid with the help of a flagging technique is 

used in order to distinguish obstacle cells from fluid cells 

in which the governing equations should be solved. 

Using a finite difference discretization scheme, the 

momentum equation can be discretized in both space and 

time. An Euler explicit (forward differencing) temporal 

discretization along with a chorin’s projection method, 

originally introduced by Chorin [19] is used to solve the 

time-dependant (transient) incompressible fluid-flow. 

Using this formulation, intermediate velocities 
*

iu  are 

calculated explicitly using the momentum equation while 

ignoring the pressure gradient in the right-hand-side of the 

equation. 
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in which nu  is the velocity at the thn  time level and the 

intermediate velocities, *u , do not satisfy the continuity 

equation. By taking the divergence-free (continuity) 

condition, a Poisson’s equation for 
1np 

 is derived as in 
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This equation is solved using the following boundary 

condition for the pressure at the +1 thn（ ） time level. 
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in which   is the domain boundary. After solving the 

Poisson’s equation, the projection step is performed in 

which the velocities at the next time level are calculated 

using the following equation. 
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One of the main advantages of the Chorin’s projection 

method is that the calculated velocity field is forced to 

satisfy the continuity equation in each time step. 

In the present study, an in-house computer code is 

developed using the above mentioned methodology and 

algorithm. A schematic of the generated staggered grid 

and the location of the primitive variables are depicted in 

Figure 1. 

 

Figure 1. Staggered grid and the location of primitive variables inside 
the computational domain 

Fluid and Obstacle cells are defined in the initialization 

step and the obstacle cells that serve as boundaries are 

flagged based on their location with respect to the adjacent 

fluid cells. 

In the present study, study of the flow around an 

obstacle in a confined channel, is aimed. Therefore, an 

inlet/outlet configuration has to be implemented on the 

upstream and downstream boundaries, respectively. The 

inflow boundary condition at the upstream uses an 

explicitly given inlet velocity while the outflow boundary 

condition at the other end of the channel is set in a way 

that the normal derivatives of both velocity components 

will vanish. The latter boundary condition means that the 

total velocity will not change in the direction normal to the 

outflow boundary and therefore can act as a non-reflective 

exit boundary. On the other hand, the no-slip wall 

boundary condition will force the continuous velocities to 

vanish in order to satisfy the no-slip condition in a way 

that all the tangential velocities for the locations lying 

directly on the boundary of a non-moving wall will have 

zero value. 

The computer code uses a successive over-relaxation 

(SOR) iterative method to solve the Poisson’s equation for 

the next time level pressure values based on the 

intermediate velocities. The iterative loop will help the 

conservation of mass to be satisfied. 

Although, the solution algorithm is easily implemented 

and the orthogonal equidistant grid leads to many 

advantages in storage and simplicity of computer code, the 

explicit time integration that was discussed above will 

impose some restrictions on time step size that has to be 

used for the numerical solution of the equations. This 

restriction is due to the stability reasons and based on the 

Courant-Friedrichs-Levi (CFL) criterion, in order to 

preserve a maximum courant number (CN) of 1.0, the 

following restriction of  
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has to be fulfilled which is based on the courant number 

definition as follows: 
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in which, ,maxiu  denotes the maximum velocity in ix  

direction. 
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In the solution algorithm, first the initial and boundary 

conditions are set. Then, the intermediate velocities will 

be calculated using the time-explicit finite difference 

discretized momentum equations in the absence of 

pressure gradients. The intermediate velocities will then 

be used to solve the Poisson pressure equation by SOR 

method. Afterwards, the pressure gradients at the new 

time level will be used to calculate velocities at the 1nn   

time level through a projection step. The algorithm will 

continue until a desired final time is reached. 

3. Details of the Test Case 

3.1. Geometry of the Computational Domain 

In this section, the computational domain and different 

geometries and configurations of the obstacle are 

presented. The diamond-shaped obstacle used for these 

studies has 5 different shapes based on the aspect ratio and 

the respective blockage ratio. In the standard form, 

hereafter referred to as ST, the obstacle has the shape of a 

rhombus or an equilateral quadrilateral with equal four 

sides. It can also be seen as a shifted rectangular cylinder 

which has been rotated 45 degrees. The diameter in ST 

shape is set in a way that satisfies the blockage ratio of 0.2. 

The obstacle is then stretched in both vertical and 

horizontal directions by multiplying each of the two 

diagonals by 1.5 and 2.0 in a way that 4 different 

geometries with different aspect ratios can be generated. 

Spanwise and streamwise stretched geometries are called 

H1, H2 and L1, L2, respectively. Different geometries and 

the computational domain are depicted in Figure 2. 

 

Figure 2. Geometries of different obstacles (a), and the computational 

domain (b) 

It can be seen in Figure 2 that the diamond-shaped 

obstacle is placed in the middle of a confined channel with 

equal distances from both side-walls. An inlet boundary is 

placed at a distant 1.5H, upstream of the obstacle with H 

being the height of the channel. With the inradius (radius 

of the incircle) of the diamond obstacle being 0.2H, it can 

be inferred that the inlet boundary is far enough from the 

obstacle based on the respective hydraulic diameter (D) of 

the obstacle, with the distance being close to 8D. The 

outflow or exit boundary is also placed far away from the 

obstacle with the distance of 4.55H or almost 23D. 

Geometrical details of the 5 different obstacles are 

presented in Table 1. The aspect ratio is defined as the 

ratio of streamwise length to the spanwise length. 

Table 1. Geometrical details of five different obstacles 

Obstacle 

Type 

Spanwise 

Diagonal 

Streamwise 

Diagonal 

Aspect 

Ratio 

(AR) 

Blockage 

Ratio 

(BR) 

ST 0.2H 0.2H 1.0 0.2 

H1 0.3H 0.2H 0.66 0.3 

H2 0.4H 0.2H 0.5 0.4 

L1 0.2H 0.3H 1.5 0.2 

L2 0.2H 0.4H 2.0 0.2 

3.2. Boundary Conditions 

General boundary conditions for the solution of the 

Navier-Stokes equations have been presented in section 2. 

Stokes’s no-slip boundary condition is applied to the side-

walls of the channel in which the tangential velocity on 

the nodes lying directly on the wall is set to zero or the 

relevant wall velocity (for the case of moving wall). Here, 

the fixed no-slip wall condition requires tan 0u    on the 

wall boundary nodes. 

For the inlet boundary, a parabolic velocity profile is 

prescribed at the entrance of the channel in order to 

simulate a fully developed laminar flow inside the 

confined channel and upstream of the diamond cylinder. 

For the sake of simplicity in the calculation of the flow’s 

Reynolds number, the maximum velocity of the parabolic 

profile is set to be 
max 1.5

m
u

s
  in order to achieve the 

similar uniform velocity of 1.0uniform

m
u

s
 . 

The outlet boundary condition for the flow inside a 

channel with inflow/outflow boundaries at each end, needs 

careful attention in terms of numerical representation. 

However, due to the large computational domain that is 

set downstream of the diamond cylinder, the solution of 

the flow in vicinity of the obstacle will not be affected. 

Nevertheless, the zero gradient of the normal velocity at 

the exit boundary is forced inside the solution algorithm. 

3.3. Validation and Mesh Dependency Study 

The numerical procedure introduced and explained in 

the previous sections has to be validated in order to make 

certain about its accuracy and efficiency. For this purpose, 

flow around the rectangular cylinder is solved for a range 

of low Reynolds numbers for which a steady solution is 

possible. No experimental results is available in the 

literature for 2-dimensional low Reynolds number flow 

around a square cylinder. Therefore, viscous laminar flow 

over rectangular cylinder is compared against the 

numerical results of Breuer et al. [1] using Finite Volume 

Method (FVM). The blockage ratio for the case of the 

square cylinder is set to be B = 1/8. The critical Reynolds 

number for the rectangular cylinder in which the vortex 

shedding will occur is around 60 as stated in different 

studies presented in the literature. As a result, flow around 

the rectangular cylinder is simulated in a range of low 

Reynolds numbers from 5 to a little less than 60 (i.e. 58) 

with the step of 5. The recirculation length as the length of 

the closed near-wake is measured for different test cases 

and the results are shown in Figure 3. The results are in 

very good agreements with the results of Breuer et al. [1] 

using a FVM method. The non-dimensional recirculation 

lengths based on the square hydraulic diameter (D) at 
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different Reynolds numbers are plotted and a curve fit on 

the results give a linear relationship between the 

recirculation length and the Reynolds number which is 

very close to the results of previous studies. 

 

Figure 3. Non-dimensional recirculation length vs. Reynolds numbers 
(using finee grid [Grid 3]) 

In order to achieve mesh independent results, a mesh 

dependency study is done for the current case. This mesh 

convergence test is based on the diamond-shaped obstacle 

placed in the middle of the flow inside the confined 

channel. Four different grids are generated from the 

coarsest grid which consists of 40,000 cells to the finest 

grid with 2,560,000 cells. Different grids that were used 

for the mesh dependency test are listed in Table 2. This 

test is performed with respect to the validation test which 

was described earlier. The respective errors for the 

recirculation length in comparison with the results of 

Breuer et al. [1] are mentioned in the last column of Table 

2. 

Table 2. Grids used for the mesh convergence test 

Grid No. Grid 

Dimension 

Total Number 

of Cells 

Grid 

size 

Error 

Grid 1 500×80 40,000 0.05 1.23 % 

Grid 2 1000×160 160,000 0.01 0.85 % 

Grid 3 2000×320 640,000 0.005 0.23 % 

Grid 4 4000×640 2,560,000 0.001 0.22 % 

Table 2 shows that, by further grid refinement (Grid 4), 

no major improvement is achieved in the numerical results 

and therefore, the fine grid (Grid 3) with the grid size of 

0.005m (5mm) will be sufficient for the accurate and 

efficient simulation of the flow around the diamond-

shaped obstacle. Another result was that by using the 

coarsest grid, the calculated recirculation length is smaller 

than that of the medium, fine and finest grids. 

4. Results and Discussions 

Flow around the diamond-shaped obstacle has been 

simulated at a Reynolds number range 1 ≤ Re < 200 using 

the in-house finite difference Navier-Stokes solver code, 

2D_NAVISTO. The laminar viscous flow is solved for 

different geometrical representations of a diamond-shaped 

obstacle. The Reynolds number is adjusted by altering the 

fluid’s dynamic viscosity and keeping the obstacle’s 

hydraulic diameter and the maximum value of the 

parabolic inlet velocity profile maxu  fixed. In the 

following sections, first the steady flow for Reynolds 

numbers lower than the critical value is presented. An 

extensive study is done on a wide range of Reynolds 

numbers with small increments in order to find the critical 

Reynolds number. This study shows that the critical value 

of Re is varied from one geometry to another. It has been 

seen that the critical Reynolds number, Recr is increased 

with the increase of aspect ratio. This is in agreement with 

our initial perception that the critical Reynolds number 

would be lower for blunt bodies (with low aspect ratios) 

than for the streamlined bodies. It is known that, when the 

drag is dominated by viscous drag, we say the body 

is streamlined, and when it is dominated by pressure drag, 

we say the body is bluff. Therefore, flow around 

streamlined bodies will experience separation and 

unsteady boundary layer at higher Reynolds numbers. 

Critical Reynolds numbers for different geometries based 

on their aspect ratios are shown in Figure 4. As the 

Reynolds number increases from this critical value, vortex 

shedding will occur and flow will enter into an unsteady 

phase. 

 

Figure 4. Critical Reynolds number vs. Aspect Ratio (AR) of the 

obstacle (for different geometries from left to right: H2, H1, ST, L1 and 

L2) 

Discussion on the flow patterns for the unsteady regime 

is presented in section 4.2 and the flow characteristics are 

discussed in depth. Finally, the vortex shedding 

phenomena and a study of the Strouhal number are 

presented in section 4.2.1.  

4.1. Steady Flow: 1 Re Recr   

The streamlines for the low Reynolds number flow 

around the diamond-shaped obstacle with different 

geometries are shown in Figure 5 through Figure 9. The 

highly viscous flow at low Reynolds number, Re ≤ 1, is 

known as the creeping flow. This steady flow will persist 

without separation while the viscous forces are largely 

dominant. Here, flow around different geometries is 

shown for the creeping flow at Re = 1 and for a Reynolds 

number of about half of the critical value for that 

particular section. 

As the Reynolds number increases, viscous forces will 

decrease until the laminar boundary layers will experience 

separation. In this region, a steady recirculation region 

will appear with two vortices that are placed 
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symmetrically on each side of the wake behind the 

obstacle. Due to the sharp corners of this diamond-shaped 

obstacle, points of separation are fixed at these edges on 

top and bottom of the obstacle. 

 

Figure 5. Streamlines for the creeping (up) and steady flow (down) 

around the diamond-shaped obstacle (ST) 

 

Figure 6. Streamlines for the creeping (up) and steady flow (down) 
around the diamond-shaped obstacle (H1) 

 

Figure 7. Streamlines for the creeping (up) and steady flow (down) 

around the diamond-shaped obstacle (H2) 

Reynolds number for the steady solution of vortices 

behind the obstacle is set at a value about half of the 

critical limit. As a result, the streamlines are shown at 

different Reynolds numbers based on different critical 

values, Recr for five geometries. 

 

Figure 8. Streamlines for the creeping (up) and steady flow (down) 

around the diamond-shaped obstacle (L1) 

 

Figure 9. Streamlines for the creeping (up) and steady flow (down) 
around the diamond-shaped obstacle (L2) 

4.2. Unsteady Flow: Re Re 200cr    

With the increase of Reynolds number from the critical 

limit, set of vortices elongate and become unstable. 

Therefore, at the end of this wake, transverse oscillations 

will appear and this will cause the generation of waves 

along the trail. Source of this instability has been studied 

for the case of circular cylinder and it was said to be 

originated in the Hopf bifurcation phenomenon as stated 

by Williamson [19]. For the case of rectangular cylinder, 

less argument is available in the literature while a critical 

value of about Re ≈ 60 ± 5 has been determined by Klekar 

and Patankar [4] and also in Breuer et al. [1]. It has been 

found that this limit depends on flow parameters such as 

blockage ratio and therefore in the present study, different 

critical values have been found for various geometries that 

were examined. The well-known phenomenon of Von 

Kármán vortex street or in general vortex shedding will 

appear with further increase of Re when the formation of 

eddies will occur. Wavelength of vortex shedding will 
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decrease as the Reynolds number rises. In Figure 10 

through 14, the streamlines for the flow around diamond-

shaped obstacle are presented at the critical Reynolds 

number for the particular geometry and at Re = 100, 200 

for all different cases, except for L2 case at Re = 150, 200. 

 

Figure 10. Streamlines for flow around the diamond-shaped obstacle (ST) 

at Recr and at Re = 100, 200 

 

Figure 11. Streamlines for flow around the diamond-shaped obstacle 

(H1) at Recr and at Re = 100, 200. 

 

Figure 12. Streamlines for flow around the diamond-shaped obstacle 

(H2) at Recr and at Re = 100, 200 

 

Figure 13. Streamlines for the flow around the diamond-shaped obstacle 

(L1) at Recr and at Re = 100, 200 
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Figure 14. Streamlines for flow around the diamond-shaped obstacle (L2) 

at Recr and at Re = 150, 200 

Final Reynolds number at which the flow has been 

simulated is set to be Re = 200. The reason for this limit 

can be sought in the change of principal behaviors in the 

flow pattern with further increase of the Reynolds number 

from this particular limit. The frequency of vortex 

shedding will rise and therefore the laminar shedding will 

no longer remain 2-dimensional. Further studies in 3-

dimensional case has proved this statement that the flow at 

Reynolds numbers above Re = 200 will experience 3-

dimensional instabilities and vortices. Also, in 2-D 

simulations, deviations from fully periodic structures have 

been recorded which will restate the above theory. It 

should also be noted that Reynolds number based on the 

height of the inlet boundary has already reached the value 

of Re = 1000 and therefore further increase of Reynolds 

number would need special treatment for the turbulence 

flow parameters. 

In the case of fully oscillating flow in 2-D simulations, 

vorticity contours will give a better representation of the 

Von Kármán vortex street. Therefore, these contour lines 

are presented in Figure 15 for all different geometrical 

cases at Re = 200. 

 

Figure 15. Vorticity contours for flow around the diamond-shaped 
obstacles at Re = 200 

4.2.1. Vortex Shedding and Strouhal Number 

In the case of unsteady flow around the diamond-

shaped obstacle, an important quantity has to be taken into 

account and that is the Strouhal number (St) which is 

computed based on the hydraulic diameter of the cylinder, 

the frequency of the vortex shedding  and the inlet 

velocity 

 
inlet

fD
St

u
  (10) 

In order to measure the frequency of vortex shedding , 

a spectral analysis based on fast Fourier transformation, 

FFT, has been performed on the time series of oscillating 

lift forces and the characteristic value of f has been 

calculated. It was seen that the Strouhal number will 

increase with rising Re in the range of Recr ≤ Re ≤ 200 

which is in good agreement with the literature. This rise in 

Strouhal number will have a maximum in a particular 

value which varies from one geometry to another based on 

different aspect ratios and Recr they have and will decrease 

again for higher Re until the limit of 2-D simulation, i.e. 

Re = 200. 

Strouhal numbers for unsteady flows in the range of 

Recr ≤ Re ≤ 200 for different geometries are plotted in 

Figure 16. The behavior of this non-dimensional number 

based on the previous statements is in good agreement 

with the results of previous investigations. Although there 

is a lack of similar 2-D laminar studies in the case of flow 

around diamond-shaped obstacles, but it can be noticed 

that there would be a rise of Strouhal number with an 

increase in the blockage ratio as presented in the literature, 

[1,5]. Also, a local maximum in the St has been reported 

by various works in the case of flow around rectangular 

cylinders. The same behavior was recorded for the present 

case of flow around diamond-shaped obstacles but at 

different Re based on different blockage ratios for each 

case. 

 

Figure 16. Computed Strouhal numbers vs. Reynolds number for 

different obstacles (ST, H1, H2, L1 and L2) 

5. Conclusions 

In the present study, the laminar 2-D flow around a 

diamond-shaped obstacle was investigated using a finite 
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difference Navier-Stokes solver. Due to the lack of 

accurate and detailed data in the literature for the present 

case, the flow was simulated in a range of Reynolds 

numbers and with five different geometries creating a 

range of aspect ratios and blockage coefficients. A 

diamond-shaped obstacle was placed in a confined 

channel with sufficient distance from both upstream and 

downstream boundaries. A finite difference Navier-Stokes 

solver, 2D_NAVISTO, using staggered grid arrangement 

and Chorin’s projection method was developed as an in-

house computer code in order to simulate fluid flow over 

the obstacles in the confined channel. A mesh dependency 

test was carried out in order to reach a minimum grid 

resolution for the required accuracy of the solution. Based 

on the lack of detailed and similar data for the case of 

diamond-shaped obstacle, the numerical solver was 

validated using the results of flow over the rectangular 

cylinder which has almost similar characteristics based on 

its sharp corners. 

The flow simulation was divided into two different 

groups. First the steady flow over the obstacles was 

investigated with the Reynolds numbers range from 1 ≤ 

Re ≤ Recr. The fully viscous or the creeping flow at Re = 1 

shows no sign of separation while the flow at higher 

Reynolds number and below the critical limit, presents 

two symmetrically placed vortices in the wake of the 

obstacle. Next, the unsteady flow is simulated with the 

range of Recr ≤ Re ≤ 200. At the critical Reynolds number 

Recr, the vortices will become instable and at higher Re, 

the well-known Von Kármán vortex street will occur. The 

limit Re = 200 is suggested in the literature for the 

maximum value at which a 2-D simulation is accurate. 

Preliminary 3-D studies have shown that at higher Re the 

vortices will have oscillations in 3-dimension which 

makes it impossible to achieve accurate results in 2-D 

simulations. 

Diamond-shaped obstacles are altered in order to obtain 

different aspect and blockage ratios which will have 

significant effect on the critical Reynolds number Recr. 

Numerical results prove that bluff bodies will have a 

lower critical value of Reynolds number than the 

streamlined bodies. Another study is presented based on 

the Strouhal number for each case at different Reynolds 

numbers. It has been found that there is an increase in St 

with the rise of Re until a maximum value that is found to 

be different for each geometry. 
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